首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the changes of quantitative dynamic contrast‐enhanced (DCE)‐MRI parameters using a reference region (RR) model for the breast invasive ductal carcinoma (IDC). We retrospectively analyzed 80 cases with pathologically confirmed IDC using quantitative DCE‐MRI with a RR model. The pharmacokinetic quantitative parameters and prognostic factors of IDC were measured, and the relationship between them was examined. The volume transfer constant (RRKtrans) and rate constant (Kep) were significantly higher in patients with level 3 histological grading compared to patients with level 1 & 2 histological grading (p < 0.05), and patients with negative estrogen receptor (ER‐negative) and/or negative progesterone receptor (PR‐negative) compared to patients with ER‐positive (p < 0.05) and/or PR‐positive (p < 0.05), and Triple‐Negative Breast Cancer (TNBC) type compared to luminal type breast cancer, respectively. Our results demonstrated that high RRKtrans and Kep values were associated with TNBC type. In addition, RRKtrans and Kep parameters can differentiate luminal type and TNBC type breast cancer.  相似文献   

2.
Gd‐based T 1‐weighted contrast agents have dominated the magnetic resonance imaging (MRI) contrast agent market for decades. Nevertheless, they are reported to be nephrotoxic and the U.S. Food and Drug Administration has issued a general warning concerning their use. In order to reduce the risk of nephrotoxicity, the MRI performance of the Gd‐based T 1‐weighted contrast agents needs to be improved to allow a much lower dosage. In this study, novel dotted core–shell nanoparticles (FeGd‐HN3‐RGD2) with superhigh r 1 value (70.0 mM?1 s?1) and very low r 2/r 1 ratio (1.98) are developed for high‐contrast T 1‐weighted MRI of tumors. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and histological analyses show good biocompatibility of FeGd‐HN3‐RGD2. Laser scanning confocal microscopy images and flow cytometry demonstrate active targeting to integrin αvβ3 positive tumors. MRI of tumors shows high tumor ΔSNR for FeGd‐HN3‐RGD2 (477 ± 44%), which is about 6‐7‐fold higher than that of Magnevist (75 ± 11%). MRI and inductively coupled plasma results further confirm that the accumulation of FeGd‐HN3‐RGD2 in tumors is higher than liver and spleen due to the RGD2 targeting and small hydrodynamic particle size (8.5 nm), and FeGd‐HN3‐RGD2 is readily cleared from the body by renal excretion.  相似文献   

3.
A ferroelectric with a high phase‐transition temperature (Tc) is an indispensable condition for practical applications. Over the past decades, both strain engineering and the isotope effect have been found to effectively improve the Tc within ferroelectric material systems. However, the former strategy seems to prefer working in inorganic ferroelectric thin films, while the latter is also limited to some certain systems, such as hydrogen‐bonded ferroelectrics. It is noted that a mono‐fluorinated molecule is geometrically very similar to its parent molecule and the substitution of H by an F atom can introduce a chiral center on the molecule to template or stabilize polar structures. Significantly, the barrier of rotation of the fluorinated organic molecules is raised, resulting in a remarkable increase in Tc. Herein, by applying the molecular design strategy of H/F substitution to the organic–inorganic perovskite ferroelectric (pyrrolidinium)CdCl3 with a low Tc of 240 K, two high‐Tc chiral perovskite ferroelectrics, (R)‐ and (S)‐3‐F‐(pyrrolidinium)CdCl3 are successfully synthesized, for which the Tc reaches 303 K. The significant enhancement of 63 K in Tc extends the ferroelectric working temperature range to room temperature. This finding provides a new effective way to regulate the Tc in ferroelectrics and to design high‐Tc molecular ferroelectrics.  相似文献   

4.
The market of available contrast agents for clinical magnetic resonance imaging (MRI) has been dominated by gadolinium (Gd) chelates based T1 contrast agents for decades. However, there are growing concerns about their safety because they are retained in the body and are nephrotoxic, which necessitated a warning by the U.S. Food and Drug Administration against the use of such contrast agents. To ameliorate these problems, it is necessary to improve the MRI efficiency of such contrast agents to allow the administration of much reduced dosages. In this study, a ten‐gram‐scale facile method is developed to synthesize organogadolinium complex nanoparticles (i.e., reductive bovine serum albumin stabilized Gd‐salicylate nanoparticles, GdSalNPs‐rBSA) with high r1 value of 19.51 mm ?1 s?1 and very low r2/r1 ratio of 1.21 (B0 = 1.5 T) for high‐contrast T1‐weighted MRI of tumors. The GdSalNPs‐rBSA nanoparticles possess more advantages including low synthesis cost (≈0.54 USD per g), long in vivo circulation time (t1/2 = 6.13 h), almost no Gd3+ release, and excellent biosafety. Moreover, the GdSalNPs‐rBSA nanoparticles demonstrate excellent in vivo MRI contrast enhancement (signal‐to‐noise ratio (ΔSNR) ≈ 220%) for tumor diagnosis.  相似文献   

5.
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m?1 K?1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m?1 K?1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.  相似文献   

6.
The equivalent material concept (EMC) assumes that the ductile material has a valid K‐based fracture toughness (KIc or Kc). For ductile materials with significant strain‐hardening, no valid KIc or Kc is determined by the standard experiments and, hence, EMC seems null. The modified EMC (MEMC) is proposed in this study by which a virtual Kc value is defined and computed for the ductile material with significant strain‐hardening. In this way, Mode I and mixed Mode I/II fracture behaviors of U‐notched aluminum alloy 5083 are assessed in the view points of experiments and theories. Several U‐notched rectangular samples are used for performing the experiments and obtaining the failure loads. Then, the MEMC is coupled with the maximum tangential stress and mean stress criteria and utilized to predict the failure loads theoretically. Finally, it is shown that both the MEMC‐stress‐based criteria can provide very good predictions of the test data.  相似文献   

7.
The room‐temperature, aqueous‐phase synthesis of iron‐oxide nanoparticles (IO NPs) with glutathione (GSH) is reported. The simple, one‐step reduction involves GSH as a capping agent and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent; GSH is an anti‐oxidant that is abundant in the human body while THPC is commonly used in the synthesis of noble‐metal clusters. Due to their low magnetization and good water‐dispersibility, the resulting GSH‐IO NPs, which are 3.72 ± 0.12 nm in diameter, exhibit a low r2 relaxivity (8.28 mm ?1s?1) and r2/r1 ratio (2.28)—both of which are critical for T1 contrast agents. This, together with the excellent biocompatibility, makes these NPs an ideal candidate to be a T1 contrast agent. Its capability in cellular imaging is illustrated by the high signal intensity in the T1‐weighted magnetic resonance imaging (MRI) of treated HeLa cells. Surprisingly, the GSH‐IO NPs escape ingestion by the hepatic reticuloendothelial system, enabling strong vascular enhancement at the internal carotid artery and superior sagittal sinus, where detection of the thrombus is critical for diagnosing a stroke. Moreover, serial T1‐ and T2‐weighted time‐dependent MR images are resolved for a rat's kidneys, unveiling detailed cortical‐medullary anatomy and renal physiological functions. The newly developed GSH‐IO NPs thus open a new dimension in efforts towards high‐performance, long‐circulating MRI contrast agents that have biotargeting potential.  相似文献   

8.
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1O2, are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria‐targeting, H2O2‐activatable, and O2‐evolving PDT nanoplatform is developed based on FeIII‐doped two‐dimensional C3N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2O2 in cancer cells to generate O2. As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1‐weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria‐targeting agent could further increase the sensitivity of cancer cells to 1O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.  相似文献   

9.
The thermal expansion of the A x Zr2.25-0.25x(PO4)3 phosphates with A = Na(x = 0.5,1.0,2.0,3.0,4.0, 5.0) and K(x = 1.0, 3.0, 5.0), crystallizing in structures of the NaZr2(PO4)3 type (sp. gr.R3c or C2/c), was studied by high-temperature x-ray powder diffraction in the range 20–700‡C. The lattice parametersa and c and thea- andc-axis thermal expansion coefficients (αa and αc) were determined. The thermal expansion of the phosphates was found to be highly anisotropic (αa < 0, αc > 0). The strongest anisotropy was found in NaZr2(PO4)3a = -4.89 x 10-6 K-1, αc = 22.02 x 10-6 K-1), KZr2(PO4)3a =-5.30 x 10-6 K-1, αc = 5.41 x 10-6 K-1), and Na5Zr(PO4)3a = -5.82 x 10-6 K-1, αc = 20.73 x 10-6 K-1). K5Zr(PO4)3 exhibited the smallest thermal expansion and weak anisotropy (αa = -2.14 x 10-6 K-1, αc = 2.65 x 10-6 K-1). The effects of M(l) and M(2) site occupancies on αa, αc,a, and c were assessed. The relative magnitudes of crystal-chemical and thermal expansion in the Na and K compounds were analyzed.  相似文献   

10.
Nanoscale surface‐engineering plays an important role in improving the performance of battery electrodes. Nb2O5 is one typical model anode material with promising high‐rate lithium storage. However, its modest reaction kinetics and low electrical conductivity obstruct the efficient storage of larger ions of sodium or potassium. In this work, partially surface‐amorphized and defect‐rich black niobium oxide@graphene (black Nb2O5?x@rGO) nanosheets are designed to overcome the above Na/K storage problems. The black Nb2O5?x@rGO nanosheets electrodes deliver a high‐rate Na and K storage capacity (123 and 73 mAh g?1, respectively at 3 A g?1) with long‐term cycling stability. Besides, both Na‐ion and K‐ion full batteries based on black Nb2O5?x@rGO nanosheets anodes and vanadate‐based cathodes (Na0.33V2O5 and K0.5V2O5 for Na‐ion and K‐ion full batteries, respectively) demonstrate promising rate and cycling performance. Notably, the K‐ion full battery delivers higher energy and power densities (172 Wh Kg?1 and 430 W Kg?1), comparable to those reported in state‐of‐the‐art K‐ion full batteries, accompanying with a capacity retention of ≈81.3% over 270 cycles. This result on Na‐/K‐ion batteries may pave the way to next‐generation post‐lithium batteries.  相似文献   

11.
High‐performance unipolar n‐type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron‐deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide‐functionalized thiazoles, 5,5′‐bithiazole‐4,4′‐dicarboxyimide (BTzI) and 2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all‐acceptor homopolymers, and the resulting polymer poly(2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide) (PDTzTI) exhibits unipolar n‐type transport with a remarkable electron mobility (μe) of 1.61 cm2 V?1 s?1, low off‐currents (Ioff) of 10?10?10?11 A, and substantial current on/off ratios (Ion/Ioff) of 107?108 in organic thin‐film transistors. The all‐acceptor homopolymer shows distinctive advantages over prevailing n‐type donor?acceptor copolymers, which suffer from ambipolar transport with high Ioffs > 10?8 A and small Ion/Ioffs < 105. The results demonstrate that the all‐acceptor approach is superior to the donor?acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.  相似文献   

12.
Recent interest in the constant Kmax (Kcmax) threshold testing procedure has resulted in a more in-depth study of the influence of Kmax level on fatigue response and ΔKth in aluminium alloys. Under Rc= 0.1 conditions, which cause large amounts of closure, ΔKth levels were typically 2 to 4 Mpam. However, under Kcmax test procedures, associated with no measurable closure at threshold, ΔKth was typically 1 Mpam. A slight Kcmax level effect on ΔKth was observed at high Kmax values for some of the alloys, and was deemed to be a pure mean stress effect, separate from closure arguments.  相似文献   

13.
In the present work, cryorolling (CR) and room temperature rolling (RTR) followed by annealing (AN) at 200°C were carried out to investigate the effects of grain size, precipitates (Mg‐Si‐phases), and AlFeMnSi‐phases on the fracture toughness of 6082 Al alloy. Using the values of the conditional fracture toughness, (KQ), in the critical fracture toughness (KIC) validation criteria, it was found that the sample size is inappropriate, which implies that the conditional fracture toughness obtained cannot be considered as the critical fracture toughness. Therefore, to establish the relative improvement in fracture toughness, the equivalent energy fracture toughness (Kee) and J‐integral were calculated and used. The results show that the values of Kee (89.91 MPa √m) and J (89.86 kJ/m2) obtained for the sample processed via CR followed by AN (CR + AN) are the highest when compared with the other samples processed through CR, RTR, and RTR followed by AN, RTR + AN. Microstructural features such as high fraction of low Taylor factor, high fraction of kernel average misorientation, Si‐rich particles, small size AlFeMnSi‐phases, and mixed mode of failure (transgranular shear and micro‐void coalescence) also support the high fracture toughness in the CR + AN sample. It was also observed that the effect of residual stresses on the fracture toughness of CR and RTR samples is minimal. Therefore, the correlation between microstructure and residual stresses is not considered in the present work due to very small values of the residual stresses for CR and RTR samples and the absence of residual stress from the heat‐treated samples.  相似文献   

14.
2D materials with inherent attributes of structural anisotropy have been well applied in the field of polarization‐sensitive photodetection. However, to explore new 2D members with strong polarized‐light responses still remains a challenge. Herein, by alloying diamine molecule into the 3D prototype of CsPbBr3, a new Dion–Jacobson (DJ) type 2D perovskite of (HDA)CsPb2Br7 ( 1 , where HDA2+ is 1,6‐hexamethylenediammonium), containing both inorganic Cs metal and organic cations is designed. The natural anisotropy characteristics of 1 are solidly elucidated by analyzing crystal structure, electric conductivity, and optical properties. Strikingly, distinct polarization‐sensitive responses are observed in 1 , owing to its strong anisotropy of optical absorption (the ratio of αc/αb ≈ 2.2). Consequently, crystal‐based detectors of 1 exhibit fascinating photo‐activities to polarized‐light, including high detectivity (1.5 × 109 Jones), large dichroism ratio (Iphc/Iphb ≈ 1.6) and fast responding rate (200 µs). All these polarization‐sensitive performances along with intriguing phase stability make 1 a potential candidate for polarized‐light detection. This work paves a pathway toward new functionalities of DJ‐type 2D hybrid perovskites for their future optoelectronic device applications.  相似文献   

15.
Microbubble activation with focused ultrasound (FUS) facilitates the noninvasive and spatially‐targeted delivery of systemically administered therapeutics across the blood–brain barrier (BBB). FUS also augments the penetration of nanoscale therapeutics through brain tissue; however, this secondary effect has not been leveraged. Here, 1 MHz FUS sequences that increase the volume of transfected brain tissue after convection‐enhanced delivery of gene‐vector “brain‐penetrating” nanoparticles were first identified. Next, FUS preconditioning is applied prior to trans‐BBB nanoparticle delivery, yielding up to a fivefold increase in subsequent transgene expression. Magnetic resonance imaging (MRI) analyses of tissue temperature and Ktrans confirm that augmented transfection occurs through modulation of parenchymal tissue with FUS. FUS preconditioning represents a simple and effective strategy for markedly improving the efficacy of gene vector nanoparticles in the central nervous system.  相似文献   

16.
High critical current densities (Jc) in thick films of the Y1Ba2Cu3O7–δ (YBCO, Tc ≈ 92 K) superconductor directly depend upon the types of nanoscale defects and their densities within the films. A major challenge for developing a viable wire technology is to introduce nanoscale defect structures into the YBCO grains of the thick film suitable for flux pinning and the tailoring of the superconducting properties to specific, application‐dependent, temperature and magnetic field conditions. Concurrently, the YBCO film needs to be integrated into a macroscopically defect‐free conductor in which the grain‐to‐grain connectivity maintains levels of inter‐grain Jc that are comparable to the intra‐grain Jc. That is, high critical current (Ic) YBCO coated conductors must contain engineered inhomogeneities on the nanoscale, while being homogeneous on the macroscale. An analysis is presented of the advances in high‐performance YBCO coated‐conductors using chemical solution deposition (CSD) based on metal trifluoroacetates and the subsequent processing to nano‐engineer the microstructure for tuneable superconducting wires. Multi‐scale structural, chemical, and electrical investigations of the CSD film processes, thick film development, key microstructural features, and wire properties are presented. Prospects for further development of much higher Ic wires for large‐scale, commercial application are discussed within the context of these recent advances.  相似文献   

17.
In this article, we present an error estimate of the derivative approximation by the local multiquadric‐based differential quadrature (LMQDQ) method. Radial basis function is different from the polynomial approximation, in which Taylor series expansion is not applicable. So, the present analysis is performed through the numerical solution of Poisson equation. It is known that the approximation error of LMQDQ method depends on three factors, i.e. local density of knots h, free shape parameter c and number of supporting knots ns). By numerical experiments, their contribution to the approximation error and correlation were studied and analysed in this paper. An error estimate εO((h/c)n) is thereafter proposed, in which n is a positive constant and determined by the number of supporting knots ns. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Mixed‐halide wide‐bandgap perovskites are key components for the development of high‐efficiency tandem structured devices. However, mixed‐halide perovskites usually suffer from phase‐impurity and high defect density issues, where the causes are still unclear. By using in situ photoluminescence (PL) spectroscopy, it is found that in methylammonium (MA+)‐based mixed‐halide perovskites, MAPb(I0.6Br0.4)3, the halide composition of the spin‐coated perovskite films is preferentially dominated by the bromide ions (Br?). Additional thermal energy is required to initiate the insertion of iodide ions (I?) to achieve the stoichiometric balance. Notably, by incorporating a small amount of formamidinium ions (FA+) in the precursor solution, it can effectively facilitate the I? coordination in the perovskite framework during the spin‐coating and improve the composition homogeneity of the initial small particles. The aggregation of these homogenous small particles is found to be essential to achieve uniform and high‐crystallinity perovskite film with high Br? content. As a result, high‐quality MA0.9FA0.1Pb(I0.6Br0.4)3 perovskite film with a bandgap (Eg) of 1.81 eV is achieved, along with an encouraging power‐conversion‐efficiency of 17.1% and open‐circuit voltage (Voc) of 1.21 V. This work also demonstrates the in situ PL can provide a direct observation of the dynamic of ion coordination during the perovskite crystallization.  相似文献   

19.
Potassium‐ion batteries (PIBs) are one of the emerging energy‐storage technologies due to the low cost of potassium and theoretically high energy density. However, the development of PIBs is hindered by the poor K+ transport kinetics and the structural instability of the cathode materials during K+ intercalation/deintercalation. In this work, birnessite nanosheet arrays with high K content (K0.77MnO2?0.23H2O) are prepared by “hydrothermal potassiation” as a potential cathode for PIBs, demonstrating ultrahigh reversible specific capacity of about 134 mAh g?1 at a current density of 100 mA g?1, as well as great rate capability (77 mAh g?1 at 1000 mA g?1) and superior cycling stability (80.5% capacity retention after 1000 cycles at 1000 mA g?1). With the introduction of adequate K+ ions in the interlayer, the K‐birnessite exhibits highly stabilized layered structure with highly reversible structure variation upon K+ intercalation/deintercalation. The practical feasibility of the K‐birnessite cathode in PIBs is further demonstrated by constructing full cells with a hard–soft composite carbon anode. This study highlights effective K+‐intercalation for birnessite to achieve superior K‐storage performance for PIBs, making it a general strategy for developing high‐performance cathodes in rechargeable batteries beyond lithium‐ion batteries.  相似文献   

20.
To protect sensitive food products from oxidative deterioration, multilayer barrier film systems and also modified atmosphere packaging are widely applied. However, the preservation of food quality in such packaging systems may be compromised by the presence of defects in the sealing layer of the films, especially when these are below a critical size, typically the detection limit of standard leak testers of 10 µm. The addition of an oxygen scavenger (OS) layer in barrier film structures could therefore provide extended protection against O2 penetration through such defects. In this study, O2 absorption of different multilayer film structures including an iron‐based OS were investigated under defined gas atmospheres. Measurement cells were thereby covered with plastic films of defined O2 permeability to simulate conditions in a food package during storage with pinhole defect sizes of 10 and 17 µm. The results indicated that the OS film structures applied could only compensate for a defect size of 10 µm in the sealing layer. Analysis of the O2 absorption of different multilayer film structures at 85% and 100% relative humidity showed that higher humidity accelerates the activation of the scavenger. After full activation, the scavenger kinetics are the same for 85% and 100% relative humidity. Long‐term storage experiments using the most effective film structure from the preliminary experiments were carried out to compare O2 absorption of a snack food product in packages with and without an OS. The analyzed linear gradient of the reaction of the OS film and food product, respectively, indicated first‐order reaction kinetics with corresponding reaction constants calculated to be K (food product) 0.021 mg (O2) mbar (O2)?1 day?1 and K (OS film) 0.066 mg (O2) mbar (O2)?1 day?1. The reaction velocity of the OS was thus three times faster than that of the food. The applicability of OS multilayer film systems to compensate a critical pinhole defect size of 10 µm for sensitive food products could therefore be confirmed. The measurement of quality parameters for the status of lipid oxidation processes would help to verify this result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号