首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This work presents an experimental study of an ammonia–water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability and the impact of the absorption refrigeration system on engine performance, exhaust emissions, and power economy are evaluated. A production automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe. The engine was tested for 25%, 50%, 75% and wide-open throttle valve. The refrigerator reached a steady state temperature between 4 and 13 °C about 3 h after system start up, depending on engine throttle valve opening. The calculated exhaust gas energy availability suggests the cooling capacity can be highly improved for a dedicated system. Exhaust hydrocarbon emissions were higher when the refrigeration system was installed in the engine exhaust, but carbon monoxide emissions were reduced, while carbon dioxide concentration remained practically unaltered.  相似文献   

2.
A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NOx emission over the speed range of 1500–5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O2 and CO2) were significantly lower than those of the gasoline emissions.  相似文献   

3.
The thermoeconomic assessment of a cogeneration application that uses a reciprocating diesel engine and an ammonia–water absorption refrigeration system for electrical power and cold production from hydrogen as fuel is presented. The purpose of the assessment is to get both exergetic and exergoeconomic costs of the cogeneration plant products at different load conditions and concentrations of hydrogen–diesel oil blends. The exhaust gas of the reciprocating diesel engine is used as an energy source for an ammonia–water absorption refrigeration system. The reciprocating diesel engine was simulated using the Gate Cycle™ software, and the ammonia–water absorption refrigeration system simulation and the thermoeconomic assessment were carried out using the Engineering Equation Solver software (EES). The results show that engine combustion is the process of higher exergy destruction in the cogeneration system. Increased hydrogen concentration in the fuel increases the system exergetic efficiency for all load conditions. Exergy destruction in the components of the ammonia–water absorption refrigeration system is increased with increasing load due to the rise of heat transfer. At intermediate and high loads energy efficiency is increased in the power system, and low values of unit exergetic cost and competitive specific exergoeconomic costs are noticed. The cogeneration system operation at intermediate and high engine loads was proven to be feasible.  相似文献   

4.
This study proposes the preliminary simulation of a single cylinder spark ignition engine with waste heat recovery system. To harvest waste heat energy from the engine exhaust a thermoelectric generator coupled to a vapor absorption refrigeration (VAR) system was proposed in this simulation work. Parametric simulation of engine, thermoelectric generator and VAR using thermodynamic relations was carried out in MATLAB – Simulink software. An attempt has been made mathematically to integrate engine, thermoelectric generator and VAR system to study the effect of engine load, speed, equivalence ratio on thermoelectric output and coefficient of performance (COP) of a VAR system. In this study, the VAR system runs by taking heat energy from the exhaust gas and the electric power produced by a thermoelectric generator was utilized to run the pump of the refrigeration system. It was found that COP of the absorption refrigeration system depends on engine load, speed and air fuel equivalence ratio. The study also reveals that about 10% to 15% of the total exhaust energy can be harvested using this system.  相似文献   

5.
天然气压力能回收装置热力学分析   总被引:4,自引:1,他引:3  
郑志  石清树  王树立 《节能技术》2009,27(5):396-400
高压天然气调压过程中存在着巨大的可供回收的压力能,节流阀、透平膨胀机、气波制冷机、涡流管是典型的能量回收设备。在对上述四种能量回收装置进行简要介绍之后,以[火用]概念为基础,以[火用]平衡为工具,对其进行了全面的热力学分析。结果表明:透平膨胀机的火用效率最高,其次是气波制冷机、涡流管、节流阀,且当膨胀比变化时,透平膨胀机的性能较稳定。涡流管、气波制冷机具有分离效果,可用于天然气脱水预冷。研究结果对于压力能回收装置的选用和调压流程的优化具有一定的指导意义。  相似文献   

6.
The prototype of combined vapour compression–absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7°C, the inlet and outlet temperatures of cooling water are 30 and 35°C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Three different connection forms for refrigerator compression-injection hybrid refrigeration cycles were presented in this paper. The pressure at the connector of the three ejectors and the power consumption were measured, and the performances of the three different connection forms for compressor-jet mixing of the refrigeration cycle were compared. Results show that for the compression-injection cross-regenerative hybrid refrigeration cycle system, loss of heat in the throttle processing was decreased effectively by an ejector. Energy consumption of the refrigerator prototype was 0.655 kWh/day, indicating an energy consumption reduction of 7.75%.  相似文献   

8.
Variable valve timing (VVT) and Miller cycle are advanced technologies employed to optimize engine performance by improving airflow exchange, which are seldom investigated based on the direct-injection (DI) hydrogen engine. The objective of this study is to assess the effects of intake valve closing (IVC) and exhaust valve opening (EVO) timing on the gas exchange performance, combustion, and emissions of a DI hydrogen engine, after which a synergistic control strategy of IVC and EVO timing is proposed. This work is conducted under wide-open throttle and 1500 rpm. The results indicate that the synergistic control of IVC and EVO timing can increase volumetric efficiency by more than 40%, enhance gas exchange performance, shorten combustion duration, and reduce cyclic variation, resulting in approximately 43.15% brake thermal efficiency. Furthermore, brake mean effective pressure can be increased by more than 60% and NO emissions are controlled to less than 20 ppm by optimizing valve timings.  相似文献   

9.
随着排放法规日趋严格,要求增大废气再循环系统EGR率的调节范围,简单的EGR系统难以满足要求。研究了变截面涡轮及排气节流阀配合单向阀的几种EGR系统,并对变截面涡轮和排气节流阀在单向阀EGR系统中的应用效果作了分析比较。  相似文献   

10.
A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). The valve closing timing for maximum MEPsteam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEPsteam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.  相似文献   

11.
An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat.  相似文献   

12.
The utilisation of exhaust waste heat is now well known and the forms the basis of many combined cooling and power installations. The exhaust gases from such installations represent a significant amount of thermal energy that traditionally has been used for combined heat and power applications. This paper explores the theoretical performance of four different configurations of a turbocharger diesel engine and absorption refrigeration unit combination when operating in a high ambient day temperature of 35 °C. The simulation is performed using “SPICE”, a well known programme commonly used for engine performance predictions. The paper examines the interfacing of the turbocharged diesel engine with an absorption refrigeration unit and estimates the performance enhancement. The influence of the cycle configuration and performance parameters on the performance of the engine operating as a power supply with an auxiliary air conditioning plant is examined. It is demonstrated that a pre- and inter-cooled turbocharger engine configuration cycle offers considerable benefits in terms of SFC, efficiency and output for the diesel cycle performance.  相似文献   

13.
This paper investigates the performance characteristics of three domestic refrigerators, namely the vapour compression (VC), the thermoelectric (TE) and the absorption refrigeration (AR). AR and TE refrigerators are the result of research and development in refrigeration system in the quest to find a cooling system which does not use any refrigerant that damages the ozone layer. Three refrigerators of similar capacity (about 50 l) were compared for their usage in the hotel industry in view of their energy efficiency, noise produced and cost (owning as well as running). It was found that the VC refrigerator consumed the least energy, was least costly but was the noisiest. The absorption refrigerator was the quietest of the three but was the least energy efficient and most expensive. The thermoelectric refrigerator was the costliest, nearly as noisy as the VC but was a little less energy efficient than the absorption refrigerator. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The current work investigates a coke oven gas fueled spark ignition (SI) engine from the perspective of the first and second laws in order to understand the energy conversion performance of fuels and achieve highly efficient utilization. A detailed energy and exergy analysis is applied to a quasi-dimensional two-zone spark ignition engine model which combines turbulence flame propagation speed model at 1500 rpm by changing gas fuel types, compression ratio, load and ignition timing. It was found that the irreversibility of methane is the maximum and that of syngas is the minimum among the three different fuels. The irreversibility in the combustion process of a coke oven gas fueled SI engine is reduced when the compression ratio or the throttle valve opening angle is increased and the ignition timing is delayed. Increasing the compression ratio and delaying the ignition timing can improve the first and second law efficiency and reduce the brake specific fuel consumption (BSFC). The power performance and fuel economy are good and the energy is also used effectively when the compression ratio is 11, the throttle angle is 90% and the ignition time is ?10° CA ATDC respectively.  相似文献   

15.
The port-injection-type hydrogen engine is advantaged in that hydrogen gas is injected into the intake pipe through a low-pressure fuel injector, and the mixing period with air is sufficient to produce uniform mixing, improving the thermal efficiency. A drawback is that the flame backfires in the intake manifold, reducing the engine output because the amount of intake air is reduced, owing to the large volume of hydrogen. Here, the backfire mechanism as a part of the development of full-load output capability is investigated, and a 2.4-liter reciprocating gasoline engine is modified to a hydrogen engine with a hydrogen supply system. To secure the stability and output performance of the hydrogen engine, the excess air ratio was controlled with a universal engine control unit.The torque, excess air ratio, hydrogen fuel, and intake air flow rate changes in time were compared under low- and high-engine speed conditions with a wide-open throttle. The excess air ratio depends on the change in the fuel amount when the throttle is completely opened, and excess air ratio increase leads to fuel/air-mixture dilution by the surplus air in the cylinder. As the engine speed increases, the maximum torque decreases because the excess air ratio continues to increase due to the occurrence of the backfire. The exhaust gas temperature also increases, except at an engine speed of 6000 rpm. Furthermore, the increase in exhaust gas temperature affects the backfire occurrence. At 2000 rpm, under low-speed and wide-open throttle conditions, backfire first occurs in the No. 4 cylinder because the mixture is heated by the relatively high port temperature. In contrast, at 6000 rpm, under high-speed and wide-open throttle conditions, the backfire starts at the No. 2 cylinder first because of a higher exhaust gas temperature, resulting in a lower excess air ratio in cylinders 2 and 3, located at the center of the engine.  相似文献   

16.
张荣沛  朱骏  季嘉晨 《柴油机》2021,43(4):10-15
基于仿真软件GT-Power对某型船用低速柴油机开展余热利用调制计算.按有、无动力涡轮两种方案,研究了涡轮增压器匹配及改变废气旁通率对主机性能的影响;并分析了不同喷油正时、排气阀正时对主机性能的影响.结果表明:废气旁通率越大,排气能量越高;通过增大废气旁通率提高排气温度时,若不同时调整涡轮增压器大小会对主机性能产生不利...  相似文献   

17.
余永华  陈永辉 《柴油机》2017,39(5):12-16
尾气后处理的转化效率受排温影响,而柴油机中低负荷下排温较低,难以满足要求。以某中型柴油机为对象,针对影响排温的进气节流阀(IAT)、电控废气旁通阀(EWG)和排气背压阀(EAT)进行了中低负荷稳态点控制策略的试验研究。试验结果表明:在满足低排放和低油耗的前提下,仅靠单一排气热管理措施难以提高排温,须两种或两种以上措施合理匹配,共同作用。基于此,提出了可行的排气热管理方案,并在WHTC测试循环下验证了该方案可使试验柴油机在保证经济性和排放的变化在可接受范围内,满足排温要求。  相似文献   

18.
Potential and knocking characteristics of a hydrogen-natural gas blend (HCNG) engine with a high compression ratio were examined from a commercial viewpoint since lean combustion with HCNG under a wide-open throttle (WOT) condition requires a high-charging-capacity turbocharger. Supercharging of intake air to extend the lean limit was investigated for a turbocharged, heavy-duty natural gas-fueled engine. Effects of compression ratio changes on fuel economy were assessed in terms of thermal efficiency and torque characteristics. Extension of the lean limit to an excess air ratio of 1.8 for an HCNG engine under WOT conditions is realizable using a supplementary supercharging system. Thermal efficiency improvement at high compression ratios is reduced under relatively rich mixture conditions because spark timing is retarded to avoid knocking. The excess air ratio corresponding to maximum thermal efficiency decreases to 1.6 for an HCNG engine due to the decrease in exhaust gas energy for intake-air charging.  相似文献   

19.
In this work, a control scheme formulation for the injection of a hydrogen-enriched E10 blend (10% of ethanol and 90% of gasoline) in an internal combustion (IC) spark-ignition (SI) engine is presented, the proposed scheme was experimentally tested. The hydrogen was produced on-demand by an electrolyzer. It is considered that only 8% of the overall air entering through the throttle valve reacts with the hydrogen gas, maintaining the hydrogen-air stoichiometric ratio at 34.3. To regulate the hydrogen gas production, the feed current to the electrolyzer was controlled by a feedback PI controller. The dosage of the E10 blend was controlled by the injection timing according to the air-E10 stoichiometric ratio (14.04). Using the hydrogen-enriched E10 blend the resulting air-fuel stoichiometric ratio in the exhaust gas emission was 14.8. The experimental results showed that the E10 blend consumption was reduced. In addition, the thermal and combustion efficiencies were increased and the braking power was not reduced.  相似文献   

20.
李薇  程有凯  张芳  赵晶玮 《节能》2009,28(11):21-23
介绍吸收式制冷循环利用低品位热能的研究现状和发展趋势。阐述吸收式制冷系统对太阳能、工业余热、生物质能和地热能四种能源的利用情况,并主要从低品位热能的选择、吸收式制冷循环系统的优化和吸收器的优化三方面分析该系统存在的问题和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号