首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Small-molecule fluorescent probes for hypochlorous acid (HOCl), one of the poorly understood reactive oxygen species (ROS), help to unveil HOCl functions in health and disease. Numerous small-molecule HOCl fluorescent probes have been developed in the past decade. Nevertheless, only a portion of them demonstrated their practical applications in biomedical research because of common problems in selectivity, sensitivity, chemostability, and photostability, etc. The problems could be addressed by a combination of rational probe design and careful selection of fluorophore templates. In this review, we describe several classes of representative HOCl fluorescent probes based on their fluorophore templates, and we discuss their design strategies, photophysical properties, and biological applications. A comprehension of their strengths, weaknesses, and common uses will facilitate the development of ideal HOCl assays and the discovery of novel biological processes.  相似文献   

4.
Fluorescence‐based oligonucleotide (ON) hybridization probes greatly aid the detection and profiling of RNA sequences in cells. However, certain limitations such as target accessibility and hybridization efficiency in cellular environments hamper their broad application because RNAs can form complex and stable structures. In this context, we have developed a robust hybridization probe suitable for imaging RNA in cells by combining the properties of 1) a new microenvironment‐sensitive fluorescent nucleobase analogue, obtained by attaching the Lucifer chromophore ( 1,8‐naphthalimide) at the 5‐position of uracil, and 2) a peptide nucleic acid (PNA) capable of forming stable hybrids with RNA. The fluorescence of the PNA base analogue labeled with the Lucifer chromophore, when incorporated into PNA oligomers and hybridized to complementary and mismatched ONs, is highly responsive to its neighboring base environment. Notably, the PNA base reports the presence of an adenine repeat in an RNA ON with reasonable enhancement in fluorescence. This feature of the emissive analogue enabled the construction of a poly(T) PNA probe for the efficient visualization of polyadenylated [poly(A)] RNAs in cells—poly(A) being an important motif that plays vital roles in the lifecycle of many types of RNA. Our results demonstrate that such responsive fluorescent nucleobase analogues, when judiciously placed in PNA oligomers, could generate useful hybridization probes to detect nucleic acid sequences in cells and also to image them.  相似文献   

5.
A series of mono-, bis- and trisvinyl-pyridinium triphenylamines (TP-py) has been synthesised and evaluated for its one- and two-photon absorption (2PA) induced-fluorescence properties under biological conditions. Interestingly, these compounds are only weakly fluorescent in water, whereas their fluorescence emissions are strongly restored (exaltation factors of 20-100) upon binding to double-stranded DNA. Additional measurements in glycerol indicate that the fluorescence increases are the result of immobilisation of the dyes in the DNA matrix, which inhibits rotational de-excitation modes. This particular feature is especially remarkable in the case of the bis and tris derivatives (TP-2 py, TP-3 py), which each display a high affinity (K(d) ~ microM) for dsDNA. TPIF measurements have shown that TP-2 py and TP-3 py each have a large 2PA cross section (delta up to 700 GM) both in glycerol and in the presence of DNA, which ranks them amongst the best 2PA biological fluorophores. Finally, one- and two-photon confocal imaging in cells revealed that these compounds perform red staining (lambda(em)=660-680 nm) of nuclear DNA with excellent contrast. The remarkable optical properties of the TP-py series, combined with their high photostability and their easy synthetic access, make these compounds extremely attractive for use in confocal and 2PA microscopy.  相似文献   

6.
The application of probes for optical imaging is becoming popular as they have high safety and good biocompatibility. We prepared two kinds of glycosyl‐modified diporphyrins, and their potentials as fluorescent probes were tested for the first time. After preparation of the glycosyl‐modified porphyrin monomers, Ag‐promoted coupling of the monomers was used to obtain glucose‐modified porphyrin dimer (GPD) and lactose‐modified porphyrin dimer (LPD). The strong interaction between the two porphyrin rings achieves red‐shifted emission, and thus circumvents autofluorescence and light‐scattering in biological samples. Although the glycosylation improves solubility, it also yielded selective attachment to cell membranes, and to chorions of early developmental‐stage zebrafish. Patch‐clamp experiments revealed the biocompatibility and low toxicity of GPD and LPD. Moreover, an in vivo imaging experiment provided direct evidence that zebrafish chorion contains sugar‐binding proteins. The modification and derivatization make porphyrins potential bioimaging probes for specific optical imaging.  相似文献   

7.
Sirtuins (SIRTs) are a family of NAD+‐dependent histone deacetylases. In mammals, dysfunction of SIRTs is associated with age‐related metabolic diseases and cancers, so SIRT modulators are considered attractive therapeutic targets. However, current screening methodologies are problematic, and no tools for imaging endogenous SIRT activity in living cells have been available until now. In this work we present a series of simple and highly sensitive new SIRT activity probes. Fluorescence of these probes is activated by SIRT‐mediated hydrolytic release of a 4‐(4‐dimethylaminophenylazo)benzoyl (Dabcyl)‐based FRET quencher moiety from the ?‐amino group of lysine in a nonapeptide derived from histone H3K9 and bearing a C‐terminal fluorophore. The probe SFP3 detected activities of SIRT1, ‐2, ‐3, and ‐6, which exhibit deacylase activities towards long‐chain fatty acyl groups. We then truncated the molecular structure of SFP3 in order to improve both its stability to peptidases and its membrane permeability, and developed probe KST‐F, which showed specificity for SIRT1 over SIRT2 and SIRT3. We show that KST‐F can visualize endogenous SIRT1 activity in living cells.  相似文献   

8.
9.
β‐Glucoside‐configured cyclophellitols are activity‐based probes (ABPs) that allow sensitive detection of β‐glucosidases. Their applicability to detect proteins fused with β‐glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M‐777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4‐methylumbelliferyl β‐d ‐lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre‐blocking with conduritol β‐epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β‐glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high‐resolution detection moieties) should assist further research in living cells and organisms.  相似文献   

10.
Carboxylesterase 1 (CES1) plays a key role in the metabolism of endogenous biomolecules and xenobiotics including a variety of pharmaceuticals. Despite the established importance of CES1 in drug metabolism, methods to study factors that can vary CES1 activity are limited with only a few suitable for use in live cells. Herein, we report the development of FCP1, a new CES1 specific fluorescent probe with a unique carbonate substrate constructed from commercially available reagents. We show that FCP-1 can specifically report on endogenous CES1 activity with a robust fluorescence response in live HepG2 cells through studies with inhibitors and genetic knockdowns. Subsequently, we deployed FCP-1 to develop a live cell fluorescence microscopy-based approach to identify activity differences between CES1 isoforms. To the best of our knowledge, this is the first application of a fluorescent probe to measure the activity of CES1 sequence variants in live cells.  相似文献   

11.
12.
13.
Two-photon fluorescent probes for the cellular membrane, derived from 6-acyl-2-aminonaphthalene as the fluorophore and hexanoyl (CH), lauryl (CL), and stearyl (CS) groups as the receptor, have been synthesized. Their photophysical properties and utility as membrane probes were also studied. Whereas CH cannot be used as a membrane probe due to its high water solubility, CL and CS are useful two-photon probes for membrane lateral heterogeneity, as they can easily stain cells, emit fluorescence with high sensitivity to the environment polarity, and are capable of imaging the membrane lateral heterogeneity in live cells. Moreover, CS is more likely to be located in the plasma membrane due to its negligible water solubility. Our results show that the liquid ordered-like domain covers 31-35% of the cellular surface.  相似文献   

14.
We report the synthesis and photolytic properties of caged inorganic phosphates (Pi compounds) based on the 2‐(4′‐{bis[2‐(2‐methoxyethoxy)ethyl]amino}‐4‐nitro‐[1,1′‐biphenyl]‐3‐yl)propan‐1‐ol (EANBP) and 7‐(diethylamino)coumarin‐4‐yl]methyl (DEACM) protecting groups. The EANBP‐Pi showed unprecedented photolysis efficiency at 405 nm, with 95 % release of free phosphate and a quantum yield of 0.28. Thanks to the high two‐photon sensitivity of the EANBP chromophore, Pi release through two‐photon photolysis is also possible, with an action cross section of 20.5 GM at 800 nm. Two bioactivatable acetoxymethyl protection groups were added to the “caged‐Pi” compounds. The resulting triesters of phosphoric acid were able to diffuse through the cellular membranes of plant cells. Once inside a cell, the cleavage of these biocleavable motifs by intracellular esterases allows intracellular accumulation of EANBP‐Pi. Bis(AM)‐EANBP‐Pi therefore represents a very attractive tool for study of the Pi signal transduction cascade in living cells.  相似文献   

15.
Iron chelation therapy has been recognized as a promising antitumor therapeutic strategy. Herein we report a novel theranostic agent for targeted iron chelation therapy and near‐infrared (NIR) optical imaging of cancers. The theranostic agent was prepared by incorporation of a polyaminocarboxylate‐based cytotoxic chelating agent (N‐NE3TA; 7‐[2‐[(carboxymethyl)amino]ethyl]‐1,4,7‐triazacyclononane‐1,4‐diacetic acid) and a NIR fluorescent cyanine dye (Cy5.5) onto a tumor‐targeting transferrin (Tf). The N‐NE3TA–Tf conjugate (without Cy5.5) was characterized and evaluated for antiproliferative activity in HeLa, HT29, and PC3 cancer cells, which have elevated expression levels of the transferrin receptor (TfR). The N‐NE3TA–Tf conjugate displayed significant inhibitory activity against all three cancer cell lines. The NIR dye Cy5.5 was then incorporated into N‐NE3TA–Tf, and the resulting cytotoxic and fluorescent transferrin conjugate N‐NE3TA–Tf–Cy5.5 was shown by microscopy to enter TfR‐overexpressing cancer cells. This theranostic conjugate has potential application for dual use in targeted iron chelation cancer therapy and NIR fluorescence imaging.  相似文献   

16.
17.
18.
Intracellular pH plays a significant role in many pathological and physiological processes. A series of quinoline-pyrene probes were synthesized in one-step fashion through an oxonium-ion-triggered alkyne carboamination sequence involving C−C, C−O and C−N bond formation for intracellular pH sensing. The quinoline-pyrenes showed significant red shifts at low pH. Fluorescence lifetime decay measurements of the probes showed decreases in lifetime at pH 4. The probes showed excellent selectivity in the presence of various potential interfering agents such as amino acids and cations/anions. Furthermore, the probes were found to show completely reversible emission behaviour in the window between pH 4 and 7. A morpholine-substituted quinoline-pyrene probe efficiently stained lysosomes with high Pearson correlation coefficients (0.86) with Lysotracker Deep Red DND-99 as a reference. A co-localization study of the probe with Lysotracker DND-99 showed selective intracellular targeting and a shift in fluorescence emission due to acidic lysosomal pH.  相似文献   

19.
We report the design and development of a fluorescent CdII ion complex that is capable of the ratiometric detection of H2S in living cells. This probe exploits the metal‐ion‐induced emission red shift resulting from direct contact between the aromatic ring of a fluorophore and a metal ion (i.e., arene–metal‐ion or “AM” contact). The CdII complex displays a large emission blue shift upon interaction with H2S as the CdII‐free ligand is released by the formation of cadmium sulfide. Screening of potential ligands and fluorophores led to the discovery of a pyronine‐type probe, 6? CdII, that generated a sensitive and rapid ratio value change upon interaction with H2S, without interference from the glutathione that is abundant in the cell. The membrane‐impermeable 6? CdII was successfully translocated into live cells by using an oligo‐arginine peptide and pyrenebutylate as carriers. As such, 6? CdII was successfully applied to the ratiometric detection of both exogenous and endogenous H2S produced by the enzymes in living cells, thus demonstrating the utility of 6? CdII in biological fluorescence analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号