首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoniazid (INH) remains one of the cornerstones of antitubercular chemotherapy for drug‐sensitive strains of M. tuberculosis bacteria. However, the increasing prevalence of multidrug‐resistant (MDR) and extensively drug‐resistant (XDR) strains containing mutations in the KatG enzyme, which is responsible for the activation of INH into its antitubercular form, have rendered this drug of little or no use in many cases of drug‐resistant tuberculosis. Presented herein is a novel family of antitubercular direct NADH‐dependent 2‐trans enoyl–acyl carrier protein reductase (InhA) inhibitors based on an N‐benzyl‐4‐((heteroaryl)methyl)benzamide template; unlike INH, these do not require prior activation by KatG. Given their direct InhA target engagement, these compounds should be able to circumvent KatG‐related resistance in the clinic. The lead molecules were shown to be potent inhibitors of InhA and showed activity against M. tuberculosis bacteria. This new family of inhibitors was found to be chemically tractable, as exemplified by the facile synthesis of analogues and the establishment of structure–activity relationships. Furthermore, a co‐crystal structure of the initial hit with the enzyme is disclosed, providing valuable information toward the design of new InhA inhibitors for the treatment of MDR/XDR tuberculosis.  相似文献   

2.
The struggle against tuberculosis (TB) is still far from over. TB, caused by Mycobacterium tuberculosis, is one of the deadliest infections worldwide. Co-infection with human immunodeficiency virus (HIV) and the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains have further increased the burden for this disease. Herein, we report the discovery of 2-(4-chlorobenzyl)-3-methyl-1-oxo-1H,5H-pyrido[1,2-a]benzimidazole-4-carbonitrile as an effective antitubercular agent and the structural modifications of this molecule that have led to analogues with improved potency and lower toxicity. A number of these derivatives were also active at sub-micromolar concentrations against resistant TB strains and devoid of apparent toxicity to Vero cells, thereby underscoring their value as novel scaffolds for the development of new anti-TB drugs.  相似文献   

3.
Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug‐resistant TB. Herein we explored the potential of an alternative class of molecules as anti‐TB agents. Thus, a series of novel 3‐substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL?1, whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50>100 μm ). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug‐resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine‐based derivatives promising leads for further development.  相似文献   

4.
Tuberculosis (TB) remains a pressing unmet medical need, particularly with the emergence of multidrug‐resistant and extensively drug‐resistant tuberculosis. Here, a series of 1,4‐substituted‐1,2,3‐triazoles have been synthesized and evaluated as potential antitubercular agents. These compounds were assembled via click chemistry in high crude purity and in moderate to high yield. Of the compounds tested, 12 compounds showed promising antitubercular activity with six possessing minimum inhibitory concentration (MIC) values <10 μg mL?1, and total selectivity for Mycobacterium tuberculosis (Mtb) growth inhibition. A second set of 21 compounds bearing variations on ring C were synthesized and evaluated. This second library gave an additional six compounds displaying MIC values ≤10 μg mL?1 and total selectivity for Mtb growth inhibition. These compounds serve as an excellent starting point for further development of antitubercular therapies.  相似文献   

5.
Tuberculosis (TB) is currently the leading cause of death related to infectious diseases worldwide, as reported by the World Health Organization. Moreover, the increasing number of multidrug-resistant tuberculosis (MDR-TB) cases has alarmed health agencies, warranting extensive efforts to discover novel drugs that are effective and also safe. In this study, 23 new compounds were synthesized and evaluated in vitro against the drug-resistant strains of M. tuberculosis. The compound 6-((3-fluoro-4-thiomorpholinophenyl)carbamoyl)benzo[c][1,2,5]oxadiazole 1-N-oxide ( 5 b ) was particularly remarkable in this regard as it demonstrated MIC90 values below 0.28 μM against all the MDR strains evaluated, thus suggesting that this compound might have a different mechanism of action. Benzofuroxans are an attractive new class of anti-TB agents, exemplified by compound 5 b , with excellent potency against the replicating and drug-resistant strains of M. tuberculosis.  相似文献   

6.
Overcoming resistance : Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross‐resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan‐based inhibitors is reported, including their promising efficacy against INH‐resistant strains of M. tuberculosis.

  相似文献   


7.
To evaluate the feasibility of developing drugs that may be active against both malaria and tuberculosis (TB) by using in part putative cholesterol transporters in the causative pathogens and through enhancement of passive diffusion in granulomatous TB, artemisinin–cholesterol conjugates were synthesized by connecting the component molecules through various linkers. The compounds were screened in vitro against Plasmodium falciparum (Pf) and Mycobacterium tuberculosis (Mtb). Antimalarial activities (IC50) against Pf drug‐sensitive NF54, and drug‐resistant K1 and W2 strains ranged from 0.03–2.6, 0.03–1.9, and 0.02–1.7 μm . Although the compounds are less active than the precursor artemisinin derivatives, the cholesterol moiety renders the compounds relatively insoluble in the culture medium, and variation in solubilities among the different compounds may reflect in the range of efficacies observed. Activities against Mtb H37Rv were assessed using a standardized colony‐forming unit (CFU) assay after 24 h pretreatment of cultures with each of the compounds. Percentage inhibition ranged from 3–38 % and 18–52 % at 10 and 80 μm , respectively. Thus, in contrast to the comparator drug artemether, the conjugates display enhanced activities. The immediate aims include the preparation of conjugates with enhanced aqueous solubilities, assays against malaria and TB in vivo, and for TB, assays using an infected macrophage model and assessment of granuloma influx.  相似文献   

8.
Tuberculosis (TB) represents a never-ending challenge toward which research efforts are needed. Drug resistance is the key problem that scientists in the field need to fight. The development of new drugs endowed with novel modes of action against different biological targets is of extreme importance; these new agents should also exhibit lower toxicity compared with the anti-TB drugs currently available. Furthermore, new drugs should be inexpensive since most of the TB-infected population lives in developing nations. In the last few years, numerous researchers have focused their attention on TB, leading to the discovery of some interesting compounds. Among these, the pyrrole-derived compounds we developed can be considered very promising antimycobacterial agents. Aided by molecular modeling studies, we synthesized numerous compounds characterized by the same 1,5-diarylpyrrole scaffold and elucidated very interesting antitubercular/antimycobacterial properties. Some compounds identified are extremely promising and represent a step towards the design of novel lead structures in the fight against TB. Our efforts to this end are reviewed here.  相似文献   

9.
New N‐alkylaminoacridine derivatives attached to nitrogen heterocycles were synthesized, and their antimalarial potency was examined. They were tested in vitro against the growth of Plasmodium falciparum, including chloroquine (CQ)‐susceptible and CQ‐resistant strains. This biological evaluation has shown that the presence of a heterocyclic ring significantly increases the activity against P. falciparum. The best compound shows a nanomolar IC50 value toward parasite proliferation on both CQ‐susceptible and CQ‐resistant strains. The antimalarial activity of these new acridine derivatives can be explained by the two mechanisms studied in this work. First, we showed the capacity of these compounds to inhibit heme biocrystallization, a detoxification process specific to the parasite and essential for its survival. Second, in our search for alternative targets, we evaluated the in vitro inhibitory activity of these compounds toward Sulfolobus shibatae topoisomerase VI‐mediated DNA relaxation. The preliminary results obtained reveal that all tested compounds are potent DNA intercalators, and significantly inhibit the activity of S. shibatae topoisomerase VI at concentrations ranging between 2.0 and 2.5 μM .  相似文献   

10.
Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate‐utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate‐based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI‐catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3‐dihydroxybenzoate scaffold, proved to be low‐micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol‐pyruvyl side chain found in chorismate and isochorismate.  相似文献   

11.
In an effort to identify novel antibacterial chemotypes, we performed a whole‐cell screen for inhibitors of Staphylococcus aureus growth and pursued those compounds with previously uncharacterized antibacterial activity. This process resulted in the identification of a benzothiazolium salt, ABTZ‐1, that displayed potent antibacterial activity against Gram‐positive pathogens. Several clinically desirable qualities were demonstrated for ABTZ‐1 including potent activity against multidrug‐resistant clinical isolates of methicillin‐resistant S. aureus (MRSA) and vancomycin‐resistant enterococci (VRE), retention of this activity in human serum, and low hemolytic activity. The antibacterial activity of ABTZ‐1 was attributed to its inhibition of bacterial translation, as this compound prevented the incorporation of [35S]methionine into S. aureus proteins, and ABTZ‐1‐resistant strains were cross‐resistant to known inhibitors of bacterial translation. ABTZ‐1 represents a promising new class of antibacterial agents.  相似文献   

12.
The diaryl ethers are a novel class of antituberculosis drug candidates that inhibit InhA, the enoyl‐ACP reductase involved in the fatty acid biosynthesis (FASII) pathway, and have antibacterial activity against both drug‐sensitive and drug‐resistant strains of Mycobacterium tuberculosis. In the present work, we demonstrate that two time‐dependent B‐ring modified diaryl ether InhA inhibitors have antibacterial activity in a mouse model of TB infection when delivered by intraperitoneal injection. We propose that the efficacy of these compounds is related to their residence time on the enzyme, and to identify structural features that modulate drug–target residence time in this system, we have explored the inhibition of InhA by a series of B‐ring modified analogues. Seven ortho‐substituted compounds were found to be time‐dependent inhibitors of InhA, where the slow step leading to the final enzyme–inhibitor complex (EI*) is thought to correlate with closure and ordering of the InhA substrate binding loop. A detailed mechanistic understanding of the molecular basis for residence time in this system will facilitate the development of InhA inhibitors with improved in vivo activity.  相似文献   

13.
Three different series of new 5‐nitroindazole derivatives—1‐(ω‐aminoalkyl)‐2‐benzylindazolin‐3‐ones (series A ; ten compounds), 3‐(ω‐aminoalkoxy)‐2‐benzylindazoles (series B ; four compounds) and 3‐alkylamino‐2‐benzylindazoles (series C ; five compounds)—have been synthesized and evaluated against the protozoan parasites Trypanosoma cruzi, Leishmania amazonensis, and Trichomonas vaginalis: etiological agents of Chagas disease, cutaneous leishmaniasis, and trichomoniasis, respectively. Many indazoles of series A , B , and C were efficient against T. cruzi. Some compounds in series A , after successfully passing the preliminary screening for epimastigotes, exhibited activity values against amastigotes of several T. cruzi strains that were better than or similar to those shown by the reference drug benznidazole and displayed low nonspecific toxicity against mammalian cells. On the other hand, preliminary studies against promastigotes of L. amazonensis showed high leishmanicidal activity for some derivatives of series A and C . With regard to activity against T. vaginalis, some indazoles of series B and C were rather efficient against trophozoites of a metronidazole‐sensitive isolate and showed low nonspecific toxicities toward Vero cell cultures. Additionally, some of these compounds displayed similar activity against metronidazole‐sensitive and resistant isolates, showing the absence of cross‐resistance between these derivatives and the reference drug.  相似文献   

14.
Tryptanthrin is an indoloquinazoline alkaloid isolated from indigo. Tryptanthrin and its benzo‐annulated derivative, benzo[b]tryptanthrin, inhibit both topoisomerases I (topo I) and II (topo II) and cause cytotoxicity in several human cancer cell lines. From diverse assessment methods, including cleavage complex stabilization, comet, DNA unwinding/intercalation, topo II ATPase inhibition, ATP competition for topo II, and wound‐healing assays, we determined that the mode of action of benzo[b]tryptanthrin is as a DNA non‐intercalative and ATP‐competitive topo I and II dual catalytic inhibitor. Benzo[b]tryptanthrin induced apoptosis through the cleavage of caspase‐3 and PARP in HCT15 colon cancer cells. Additionally, benzo[b]tryptanthrin reversed adriamycin resistance by down‐regulation of multidrug resistance protein 1 (MDR1) in adriamycin‐resistant MCF7 breast cancer cells (MCF7adr) with more potent inhibitory activity than tryptanthrin. Taken together, derivatization by benzo‐annulation of tryptanthrin ameliorated the MDR‐reversing effect of tryptanthrin and may pave the way to the discovery of a novel potent adjuvant agent for chemotherapy.  相似文献   

15.
CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.  相似文献   

16.
To gain insight into the mechanism of action, the redox properties of 37 quinoxaline-2-carboxamide 1,4-di-N-oxides with varying degrees of anti-tuberculosis activity were studied in dimethylformamide (DMF) using cyclic voltammetry and first derivative cyclic voltammetry. For all compounds studied, electrochemical reduction in DMF is consistent with the reduction of the N-oxide functionality to form a radical anion. The influence of molecular structure on reduction potential is addressed and it can be said that a general relationship exists between reduction potential and reported antimicrobial activity. For those compounds which have demonstrated promising biological activity, the more active the compound the less negative the reduction potential typically is. The results suggest the possible participation of charge transfer processes in the mechanism of action of quinoxaline di-N-oxides against tuberculosis and offer new insights into the design of future antitubercular drugs.  相似文献   

17.
Multidrug resistance (MDR) is the cause of an ever‐increasing number of problems in the treatment of cancers and bacterial infections. The active efflux of drugs contributes significantly to this phenomenon. This minireview summarizes recent advances in combating MDR, with particular emphasis on natural and synthetic efflux pump inhibitors of P‐glycoprotein in resistant tumor cells and of the NorA MDR pump in Staphylococcus aureus.  相似文献   

18.
A group of novel anilinoquinazoline derivatives with variable aryl and heterocyclic substituents at position 6 were synthesized and tested for their EGFR‐inhibitory activity. Aryl and heterocyclic rings were attached to the quinazoline scaffold through different linkages such as imine, amide, and thiourea. Most of the aryl and heterocyclic derivatives showed potent inhibition of wild‐type EGFR with IC50 values in the low nanomolar range. Among these, thiourea derivatives 6 a , 6 b and compound 10 b also retained significant activity toward the gefitinib‐insensitive EGFRT790M/L858R mutant, displaying up to 24‐fold greater potency than gefitinib. In addition, cell growth inhibitory activity was tested against cancer cell lines with wild‐type (KB cells) and mutant EGFR (H1975 cells). Several compounds including 6 a were found to be more potent than the reference compound gefitinib toward both cell lines, as was the case for compound 10 b against H1975 cells. Therefore, compounds 6 a and 10 b in particular may serve as new leads for the development of inhibitors effective against wild‐type EGFR as well as gefitinib‐resistant mutants.  相似文献   

19.
Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 − 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.  相似文献   

20.
A series of benzimidazole–quinolone hybrids as new potential antimicrobial agents were designed and synthesized. Bioactive assays indicated that some of the prepared compounds exhibited potent antibacterial and antifungal activities. Notably, 2‐fluorobenzyl derivative 5 b (ethyl 7‐chloro‐6‐fluoro‐1‐[[1‐[(2‐fluorophenyl)methyl]benzimidazol‐2‐yl]methyl]‐4‐oxo‐quinoline‐3‐carboxylate) showed remarkable antimicrobial activity against resistant Pseudomonas aeruginosa and Candida tropicalis isolated from infected patients. Active molecule 5 b could not only rapidly kill the tested strains, but also exhibit low toxicity toward Hep‐2 cells. It was more difficult to trigger the development of bacterial resistance of P. aeruginosa against 5 b than that against norfloxacin. Molecular docking demonstrated that 5 b could effectively bind with topoisomerase IV–DNA complexes, and quantum chemical studies theoretically elucidated the good antimicrobial activity of compound 5 b . Preliminary experimental reaction mechanism exploration suggested that derivative 5 b could not intercalate into DNA isolated from drug‐resistant P. aeruginosa, but was able to cleave DNA effectively, which might further block DNA replication to exert powerful bioactivities. In addition, compound 5 b is a promising antibacterial agent with membrane disruption abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号