首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙丽  孙有朝 《测控技术》2022,41(1):11-15
为了提高动态复杂环境下飞机驾驶舱人机系统的安全性,提出一种基于负荷均衡的动态功能分配方法。结合飞行任务和飞行员生理特征预测飞行员的工作负荷,将预测结果作为动态功能分配的触发条件,基于模糊推理调整驾驶舱自动化等级,实现飞行任务在飞行员和自动化系统之间的协调分配。基于Simulink建立飞行任务需求、飞行员生理特征、飞行员工作负荷预测、模糊推理、任务分析与再分配模块,通过仿真测试对提出的方法进行分析和验证,结果表明该方法能够及时有效地调整任务分配,避免飞行员工作负荷过高或过低。  相似文献   

2.

This work focuses on the analysis of pilots’ performance during manual flight operations in different stages of training and their influence on gaze strategy. The secure and safe operation of air traffic is highly dependent on the individual performances of the pilots. Before becoming a pilot, he/she has to acquire a broad set of skills by training to pass all the necessary qualification and licensing standards. A basic skill for every pilot is manual control operations, which is a closed-loop control process with several cross-coupled variables. Even with increased automation in the cockpit, the manual control operations are essential for every pilot as a last resort in the event of automation failure. A key element in the analysis of manual flight operations is the development over time in relation to performance and visual perception. An experiment with 28 participants (including 11 certified pilots) was conducted in a Boeing 737 simulator. For defined flight phases, the dynamic time warping method was applied to evaluate the performance for selected criteria, and eye-tracking methodology was utilized to analyze the gaze-pattern development. The manipulation of workload and individual experience influences the performance and the gaze pattern at the same time. Findings suggest that the increase of workload has an increased influence on pilots depending on the flight phase. Gaze patterns from experienced pilots provide insights into the training requirements of both novices and experts. The connection between workload, performance and gaze pattern is complex and needs to be analyzed under as many differing conditions. The results imply the necessity to evaluate manual flight operations with respect to more flight phases and a detailed selection of performance indications.

  相似文献   

3.
Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.  相似文献   

4.
This study aimed to analyze aircraft ground operation processes from a human factors perspective with special emphases on the occurrence and influence of interruptions on pilots’ workload. Interruptions have been shown to increase workload and error probability as well as to contribute to fatal accidents in various fields. Countermeasures have been initiated especially in high-risk environments such as those involving medical issues. In aviation, more explicitly during turn-around processes, interruptions might occur frequently and impair flight safety. One hundred and sixty fully certified pilots working for a European airline were observed during their turn-around while performing real operations. Pilots’ interruptions were documented and classified in order to predict subjectively perceived workload by use of multiple linear regression analysis. External factors such as weather conditions, technical problems, and time pressure were considered as covariates. On average, a pilot experienced about eight interruptions during a turn-around. Overall workload estimates showed a level comparable to that of manual flying in a simulator. Interruptions from colleagues or from outside the cockpit were found to predict pilots’ workload; however, further external factors such as poor weather conditions impacted workload even more strongly. We suggest two approaches based on our results to handling the high rate of interruptions. We first recommend procedural changes to diminish the interruption rate; second, we recommend comprehensive, line-oriented flight training for airline and ground staff to raise awareness about the negative influence of interruptions.  相似文献   

5.
Synthetic vision systems (SVS) render terrain features for pilots through cockpit displays using a GPS database and three‐dimensional graphical models. Enhanced vision systems (EVS) present infrared imagery of terrain using a forward‐looking sensor in the nose of an aircraft. The ultimate goal of SVS and EVS technologies is to support pilots in achieving safety under low‐visibility and night conditions comparable to clear, day conditions. This study assessed pilot performance and situation awareness (SA) effects of SVS and EVS imagery in an advanced head‐up display (HUD) during a simulated landing approach under instrument meteorological conditions. Videos of the landing with various HUD configurations were presented to eight pilots with a superimposed tracking task. The independent variables included four HUD feature configurations (baseline [no terrain imagery], SVS, EVS, and a combination of SVS and EVS), two visibility conditions, and four legs of the flight. Results indicated that SVS increased overall SA but degraded flight path control performance because of visual confusion with other display features. EVS increased flight path control accuracy but decreased system (aircraft) awareness because of visual distractions. The combination of SVS and EVS generated offsetting effects. Display configurations did not affect pilot spatial awareness. Flight performance was not different among phases of the approach, but levels and types of pilot SA did vary from leg to leg. These results are applicable to development of adaptive HUD features to support pilot performance. They support the use of multidimensional measures of SA for insight on pilot information processing with advanced aviation displays. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
OBJECTIVE: General aviation (GA) pilot performance utilizing a mixed-modality simulated data link was objectively evaluated based on the time required in accessing, understanding, and executing data link commands. Additional subjective data were gathered on workload, situation awareness (SA), and preference. BACKGROUND: Research exploring mixed-modality data link integration to the single-pilot GA cockpit is lacking, especially with respect to potential effects on safety. METHODS: Sixteen visual flight rules (VFR)-rated pilots participated in an experiment using a flight simulator equipped with a mixed-modality data link. Data link modalities were text display, synthesized speech, digitized speech, and synthesized speech/text combination. Flight conditions included VFR (unlimited ceiling and visibility) or marginal VFR flight conditions (clouds 2,800 ft above ground level, 3-mile visibility). RESULTS: Statistically significant differences were found in pilot performance, mental workload, and SA across the data link modalities. Textual data link resulted in increased time and workload as compared with the three speech-type data link conditions, which did not differ. SA measures indicated higher performance with textual and digitized speech data link conditions. CONCLUSION: Textual data link can be significantly enhanced for single-pilot GA operations by the addition of a speech component. APPLICATION: Potential applications include operational safety in future GA systems that incorporate data link for use by a single pilot and guidance in the development of flight performance objectives for these systems.  相似文献   

7.
This paper presents a method for measuring pilot workload based on task analysis in order that the cockpit can be designed more reasonably. In addition, a prototype system is developed to use this method for the assessment of pilot workload. The method breaks the pilot's mission into several phases, segments, functions and tasks. And break pilot workload into 6 components using Wickens' "multi-resource theory", which are vision(V), vision goggles(G), auditory sensation(A), cognitive activity(C), psychomotor activity(P) and kinesthesis(K). All missions consist of those tasks and each task have 6 workload components. The workload components for each task have been acquired by a study on many pilots, so workload can be assessed. A mission analysis database is built, and the prototype system can simulate pilot's flight process and evaluate workload.  相似文献   

8.
《Ergonomics》2012,55(9):1387-1399
Twelve professional pilots performed a flight simulation consisting of three component sub-tasks: (i) tracking, (ii) monitoring and (iii) targeting, respectively. The targeting sub-task required (i) target identification, (ii) weapon selection and then (iii) weapon release. Pilots performed in a fully manual condition, a partial automation condition or a fully automated condition. Automated assistance was provided for the targeting sub-task only, while tracking and monitoring sub-tasks were always performed manually. During full automation, the computer located the target, identified it and released the appropriate weapon without any pilot input. During partial automation, the computer located and identified the target while the pilot retained final control over weapon release. Significantly higher levels of tracking error distinguished manual from both automated conditions and also between the two levels of automation. Monitoring response times were also sensitive to the degree of automation engaged, with the partial-automation condition exhibiting faster responses than full automation. Findings support a design principle in which pilots retain control over final weapons release directly on the basis of objective performance outcome. These collective results support the contention that effective and principled task-partitioning should represent a central strategy for the evolution of complex human–machine systems.

Practitioner Summary: Advantages of partitioning tasks between human and automated control are contingent upon the overall context of performance and the actual way the partitioning is accomplished. Simple algorithms, for example, automate on every feasible occasion, are poor design heuristics and may even prove actively harmful to overall response capacity. Transitioning humans from active controllers to passive monitors can be a problematic design choice, especially when that individual is socially deemed to retain overall responsibility for ultimate system effects in the real world.  相似文献   

9.
Two experiments examined pilots' maneuver choice and visual workload in a free-flight simulation. In Experiment 1, 12 pilots flew a high-fidelity flight simulator with a cockpit display of traffic information and maneuvered to avoid traffic in a simulated free-flight environment. Pilots' choices reflected a preference to make vertical rather than lateral avoidance maneuvers and to climb rather than descend. Pilots avoided both complex maneuvers and airspeed maneuvers. The data were modeled in terms of how pilots traded off factors related to safety, efficiency, mental effort, and prior habits. In Experiment 2, 10 pilots flew the same maneuvers as the pilots in Experiment 1 but followed ATC instructions rather than using the CDTI. The CDTI in Experiment 1 occupied 25% of the pilots' visual attention. A comparison of scanning with Experiment 2 suggested that the CDTI pulled visual attention away from the outside world, but this attention diversion did not leave pilots vulnerable to missing traffic not annunciated on the CDTI. Actual or potential applications of the results include understanding the safety implications of presenting traffic displays in the cockpit, and the impact of pilot maneuver preferences on airspace procedures.  相似文献   

10.
《Ergonomics》2012,55(1):112-130
A total of 24 pilots viewed dynamic encounters between their own aircraft and an intruder aircraft on a 2-D cockpit display of traffic information (CDTI) and estimated the point and time of closest approach. A three-level alerting system provided a correct categorical estimate of the projected miss distance on 83% of the trials. The remaining 17% of alerts were equally divided between misses and false alarms, of large and small magnitude. Roughly half the pilots depended on automation to improve estimation of miss distance relative to the baseline pilots, who viewed identical trials without the aid of automated alerts. Moreover, they did so more on the more difficult traffic trials resulting in improved performance on the 83% correct automation trials without causing harm on the 17% automation-error trials, compared to the baseline group. The automated alerts appeared to lead pilots to inspect the raw data more closely. While assisting the accurate prediction of miss distance, the automation led to an underestimate of the time remaining until the point of closest approach. The results point to the benefits of even imperfect automation in the strategic alerts characteristic of the CDTI, at least as long as this reliability remains high (above 80%).  相似文献   

11.
An airborne air-to-ground data link communication interface was evaluated in a multi-sector-planning scenario using an Airbus A 340 full flight simulator. In a close-to-reality experimental setting, eight professional crews performed a flight mission in a mixed voice/data link environment. Experimental factors were the medium (voice vs. data link), workload (low vs. high) and the role in the cockpit (pilot flying vs. pilot non-flying). Data link communication and the usability of the newly developed communication interface were rated positively by the pilots, but there is a clear preference for using a data link only in the phase of cruise. Cognitive demands were determined for selected sections of en-route flight. Demands are affected mainly by increased communication needs. In the pilots’ view, although a data link has no effect on safety or the possibilities of intervention, it causes more problems. The subjective workload, as measured with the NASA Task Load Index, increased moderately under data link conditions. A data link has no general effect on pilots’ situation awareness although flight plan negotiations with a data link cause a distraction of attention from monitoring tasks. The use of a data link has an impact on air-to-ground as well as intra-crew communication. Under data link conditions the pilot non-flying plays a more active role in the cockpit. Before introducing data link communication, several aspects of crew resource management have to be reconsidered. Correspondence and offprint requests to: T. Müller, Technical University of Berlin, Institute of Psychology and Ergonomics, Department of Human–Machine Systems, Jebensstrasse 1, 10623 Berlin, Germany.  相似文献   

12.
We present a computational cognitive model of novice and expert aviation pilot action planning called ADAPT that models performance in a dynamically changing simulated flight environment. We perform rigorous tests of ADAPT's predictive validity by comparing the performance of individual human pilots to that of their respective models. Individual pilots were asked to execute a series of flight maneuvers using a flight simulator, and their eye fixations and control movements were recorded in a time-synched database. Computational models of each of the 25 individual pilots were constructed, and the individual models simulated execution of the same flight maneuvers performed by the human pilots. The time-synched eye fixations and control movements of individual pilots and their respective models were compared, and rigorous tests of ADAPT's predictive validity were performed. The model explains and predicts a significant portion of pilot visual attention and control movements during flight as a function of piloting expertise. Implications for adaptive training systems are discussed.  相似文献   

13.
The present experiment examined pilot response to the rapid cycling of automation. The experiment was conducted using a multi-task simulation environment consisting of tracking, fuel management, and system monitoring sub-tasks. Monitoring and fuel management sub-tasks were performed manually in all conditions. The tracking sub-task cycled between manual and automated control at fixed intervals of either 15, 30 or 60 sec. These cycle times were completely crossed with three levels of tracking difficulty giving nine within-subject conditions which lasted 5 min each. Performance was measured on each of the sub-tasks, as was pilot fatigue level and subjective workload for the respective conditions. Results indicated that both difficulty and cycle duration significantly affected tracking performance which was degraded with task difficulty and longer cycle times. Fuel management and system monitoring performance were unaffected by tracking difficulty and automation duration. However, a subsequent analysis was conducted using the 15 sec period immediately following each automation episode as a ‘window’ of performance. A different pattern of results was observed. Tracking performance was similarly affected by difficulty, but was no longer affected by cycle duration. Furthermore, fuel management error indicated a trend toward better performance in low difficulty conditions. Results illustrate micro trade-offs within sub-tasks and macro trade-offs between sub-tasks. Overall, the results support the contention that excessively short cycles of automation prove disruptive to performance in multi-task conditions.  相似文献   

14.
《Ergonomics》2012,55(10):1462-1477
'Fly-by-wire' (FBW) electronic flight control systems in modern commercial aircraft have removed the requirement for the primary control inceptors in the cockpit to have a cross-cockpit linkage, and also for them to be back-driven from the autoflight systems. This comparative survey of 157 commercial pilots with current type ratings on either an FBW aircraft or a conventional technology aircraft, however, suggests that the deletion of these linkages may have degraded the lines of communication in the cockpit, both between the pilots and between the pilot and the aircraft. It is argued that this may adversely affect a pilot's situation awareness.  相似文献   

15.
This paper describes an approach to cognitive and cooperative operator assistance in the field of tactical flight mission management. A framework for a generic functional concept is derived from general considerations of human performance and cognitive engineering. A system built according to these human-centred design principles will be able to keep up with the change of situation parameters, in order to provide situational adapted operator assistance. Such a cognitive assistant system represents an approach to ensure the highest degree possible of situation awareness of the flight deck crew as well as a satisfactory workload level. This generic approach to mission management and crew assistance for military aircraft has been realised in different application domains such as military transport and air-to-ground attack. The Crew Assistant Military Aircraft is a functional prototype for the air transport application. Even applications in the domain of uninhabited aerial vehicles (UAV) are in reach. This paper mainly covers one state-of-the-art research and development activity in the domain of combat aircraft: the TMM – Tactical Mission Management System is an experimental solution for the air-to-ground attack role. The TMM has been implemented as a functional prototype in the mission avionics experimental cockpit (MAXC), a development flight simulator at ESG and evaluated with German Air Force pilots as subjects in simulator trials. Therefore, the TMM has been compared with a reference cockpit avionics configuration in terms of task performance, workload, situation awareness and operator acceptance. After giving an overview of the system concepts this paper reports on the experimental design and results of the simulator trial campaign.  相似文献   

16.
The manipulation of colour in display symbology design has been recognised as a method to improve operator experience and performance. An earlier paper by the authors demonstrated that redundantly colour coding head-up flight symbology supported the manual flying performance of both professional and non-professional pilots during low-workload flying scenarios. In this study the workload and performance of 12 professional airline pilots was evaluated in high workload conditions whilst they flew manoeuvres and an instrument landing system (ILS) approach with and without the presence of colour feedback on a head up display (HUD). Workload was manipulated by presenting pilots with a concurrent auditory n-back task. Colour coded flight symbology reduced the subjective workload of the pilots during high workload conditions. In contrast, manual flying performance during high workload was not improved by the presence of colour coded feedback.  相似文献   

17.
Teams formulated by aviation professionals are essential in maintaining a safe and efficient aerodrome environment. Nonetheless, the shared situational awareness between the flight crews under adverse weather conditions might be impaired. This research aims to evaluate the impact of a proposed enhancement in communication protocol on cognitive workload and develop a human-centred classification model to identify hazardous meteorological conditions. Thirty groups of subjects completed four post-landing taxiing tasks under two visibility conditions (CAVOK/CAT IIIA) while two different communication protocols (presence/absence of turning direction information) were adopted by the air traffic control officer (ATCOs). Electroencephalography (EEG) and the NASA Task Load Index were respectively used to reflect the pilot’s mental state and to evaluate the pilot’s mental workload subjectively. Results indicated that impaired visibility increases the subjective workload significantly, while the inclusion of turning direction information in the ATCO’s instruction would not significantly intensify their cognitive workload. Mutual information was used to quantitatively assess the shared situational awareness between the pilot flying and the pilot monitoring. Finally, this research proposes a human-centred approach to identify potentially hazardous weather conditions from EEG power spectral densities with Bayesian neural networks (BNN). The classification model has outperformed other baseline algorithms with an accuracy of 66.5%, an F1 score of 61.4%, and an area under the ROC of 0.749. Using the concept of explainable AI with Shapley Additive Explanations (SHAP) values, the exploration of latent mental patterns formulates novel knowledge to gain insights into the vital physiological indicators of the pilots in response to different scenarios from the BNN model. In the long term, the model facilitates the decision regarding the necessity of providing automation and decision-making aids to pilots.  相似文献   

18.
NextGen aviation will require an even greater reliance on automation than current‐day operations. Therefore, systems with problems in human–automation interaction must be identified and resolved early, well before they are introduced into operation. This paper describes a research and software development effort to build a prototype automation design advisor tool (ADAT) for flight deck automation. This tool uses models of human performance to identify perceptual, cognitive, and action‐related inefficiencies in the design of flight management systems. Aviation designers can use the tool to evaluate and compare potential flight deck automation designs and to identify potential human–automation interaction concerns. Designers can compare different flight management systems in terms of specific features and their ability to support pilot performance. ADAT provides specific, research‐based guidance for resolving problematic design issues. It was specifically designed to be flexible enough for both current‐day technologies and revolutionary NextGen designs. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Xu X  Wickens CD  Rantanen EM 《Ergonomics》2007,50(1):112-130
A total of 24 pilots viewed dynamic encounters between their own aircraft and an intruder aircraft on a 2-D cockpit display of traffic information (CDTI) and estimated the point and time of closest approach. A three-level alerting system provided a correct categorical estimate of the projected miss distance on 83% of the trials. The remaining 17% of alerts were equally divided between misses and false alarms, of large and small magnitude. Roughly half the pilots depended on automation to improve estimation of miss distance relative to the baseline pilots, who viewed identical trials without the aid of automated alerts. Moreover, they did so more on the more difficult traffic trials resulting in improved performance on the 83% correct automation trials without causing harm on the 17% automation-error trials, compared to the baseline group. The automated alerts appeared to lead pilots to inspect the raw data more closely. While assisting the accurate prediction of miss distance, the automation led to an underestimate of the time remaining until the point of closest approach. The results point to the benefits of even imperfect automation in the strategic alerts characteristic of the CDTI, at least as long as this reliability remains high (above 80%).  相似文献   

20.
Sarter NB  Woods DD 《Human factors》1997,39(4):553-569
Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号