首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a global systemic approach, the wind energy system operation behaviour is first simulated using five different types of power curve for the wind turbine. Adding physical (charge current limitation) and cost considerations, we have determined the optimized energy system for various levels of satisfaction (LLP), i.e. both able to satisfy the load with a certain percentage of the load not satisfied and to offer the lowest kWh cost. We studied the influences of the power profile of the wind turbine that affect productivity and the relative repartition between input power and output power and wasted energy. This wasted energy decreases rapidly with the value of the LLP. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This study presents a selection of optimal energy alternatives for electrical self‐sufficiency in a rural university (Universidad del Istmo, UNISTMO), located in the state of Oaxaca, Mexico and for the electricity supply for a rural community (Gran Piedra) in Santiago, Cuba. The analysis follows a multicriteria approach. It uses a method called compromise programming and takes into account the technical, economical, environmental and social criteria. The hybrid optimization model for electric renewables (HOMER) software was used to generate alternative energy sets through enumerative search, with which decisional matrices were built for each case study. The influence of weighting for each criterion was assessed. In the case of self‐sufficiency in UNISTMO, when the decision‐making center has a preference for the minimization of equivalent emissions in the life cycle (ESLC), a wind system is suitable. On the other hand, when there is a preference for the minimization of levelized cost of energy, a photovoltaic (PV) system is suitable; both systems connected to the national electrical grid. Obviously, a preference for the minimization of capital cost led to keeping the power supply from the grid. In the case of Gran Piedra, a diesel generator‐based system is suitable when the criterion ‘capital cost’ absorbs 70% or more of the preferences of the decision‐making centers. When the preference is less than 70% regardless of the weighting given to other criteria, the best alternatives are those involving renewable technologies, reaching renewable fractions of 75% and 94% in two potential configurations of energetic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Using a global approach, a wind hybrid system operation is simulated and the evolution of several parameters is analysed, such as the wasted energy, the fuel consumption and the role of the wind turbine subsystem in the global production. This analysis shows that all the energies which take part in the system operation are more dependent on the wind turbine size than on the battery storage capacity. A storage of 2 or 3 days is sufficient, because an increase in storage beyond these values does not have a notable impact on the performance of the wind hybrid system. Finally, a cost study is performed to determine the optimal configuration of the system conducive to the lowest cost of electricity production. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

5.
This paper presents a simplified algorithm to estimate the monthly performance of autonomous small-scale wind energy systems with battery storage. The novel model is drawn based on the simulation results, using eight-year long hour-by-hour measured wind speed data from five different locations throughout the world. An hourly constant load profile is used. The renewable energy simulation program (ARES) of the Cardiff School of Engineering is used. The ARES simulates the battery state of voltage (SoV) and is able to predict the system performance.The monthly performance values obtained from the simulations are plotted against increasing energy to load ratios for varying battery storage capacities to obtain performance curves. The novel method correlates the monthly system performance with the parameters of the Weibull distribution function, thus offering a universal use. The monthly performance curves are mathematically represented using a 2-parameter function. The novel method is validated by comparing the simulated performance values with those estimated from the simplified algorithm. The standard errors calculated in estimation of the system performance using the simplified algorithm are further presented for each battery capacity.  相似文献   

6.
This study aimed to identify the environmental and economic aspects of the wind-hydrogen system using life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The target H2 pathways are the H2 pathway of water electrolysis (WE) with wind power (WE[Wind]) and the H2 pathway of WE by Korean electricity mix (WE[KEM]). Conventional fuels (gasoline and diesel) are also included as target fuel pathways to identify the fuel pathways with economic and environmental advantages over conventional fuels. The key environmental issues in the transportation sector are analyzed in terms of fossil fuel consumption (FFC), regulated air pollutants (RAPs), abiotic resource depletion (ARD), and global warming (GW). The life cycle costs of the target fuel pathways consist of the well-to-tank (WTT) costs and the tank-to-wheel (TTW) costs. Moreover, two scenarios are analyzed to predict potential economic and environmental improvements offered by wind energy-powered hydrogen stations.  相似文献   

7.
This article summarizes the U.S. Environmental Protection Agency (EPA) National Risk Management Research Laboratory's Fuel Cell Program (www.epa.gov/ORD/NRMRL/std/fuelcell) and presents interim findings of an ongoing project aimed at quantifying how clean fuel cell technology is from “cradle-to-grave” compared to conventional power generation processes. Data and data sources will be reviewed by fuel cell type (polymer exchange membrane, phosphoric acid fuel cell, solid oxide fuel cell, molten carbonate fuel cell, etc.) and life cycle stage (manufacture, use, end of life). Data gaps will also be identified as well as proposed EPA strategies for filling these “knowledge” gaps regarding the environmental attributes of fuel cells.  相似文献   

8.
At present, pumped hydro energy storage plays the dominant role in electrical energy storage. However, its development is clearly restricted by the topography and adverse impacts on local residents. Underground pumped hydro energy storage (UPHES) using abandoned mine pits not only can effectively remedy these drawbacks but is also constructive to the management of abandoned mine pits. In this paper, we firstly conduct a comprehensive analysis of conventional pumped hydro energy storage (CPHES) and UPHES, using life cycle sustainability assessment (LCSA). Sustainability indicators in this paper include economic indicators, environmental indicators, and social indicators. Among all the indicators, blue water footprint (BWF) and ecological footprint (EF) are included for the first time to assess the social performance of CPHES and UPHES. Then, this paper employs multi-attribute value theory (MAVT) and scenario analysis to evaluate the overall performance of energy storages. The results show that CPHES has better performance in economy and environment than UPHES because of the economies of scale, while the UPHES has better performance in social sustainability impact because of the absence of stages of excavation and backfilling. When using MAVT methodology, only when the weight for social indicator is three times higher than that of economy and environment; ie, the weight for social dimension is 0.6, and the weights for environmental and social dimension are 0.2; the score of UPHES is higher than CPHES.  相似文献   

9.
J. K. Kaldellis 《风能》2003,6(4):355-364
Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. However, the expected system operational cost is quite high, especially if the no‐load rejection restriction is applied. This article describes an integrated feasibility analysis of a stand‐alone wind power system, considering, beyond the total long‐term operational cost of the system, the no‐energy fulfilment (or the alternative energy coverage) cost of the installation. Therefore the impact of desired system reliability on the stand‐alone system configuration is included. Accordingly, a detailed parametric investigation is carried out concerning the influence of the hourly no‐energy fulfilment cost on the system dimensions and operational cost. Thus, by using the proposed method, one has the capability–in all practical cases–to determine the optimum wind power system configuration that minimizes the long‐term total cost of the installation, considering also the influence of the local economy basic parameters. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. In many cases, however, the battery contribution to the initial or the total operational cost is found to be dominant, discouraging further penetration of the available wind resource. This is basically the case for areas possessing a medium–low wind potential. On the other hand, several isolated consumers are located in regions having the regular benefit of an abundant and reliable solar energy supply. In this context the present study investigates the possibility of reducing the battery size of a stand‐alone wind power installation by incorporating a small photovoltaic generator. For this purpose an integrated energy production installation based exclusively on renewable energy resources is hereby proposed. Subsequently a new numerical algorithm is developed that is able to estimate the appropriate dimensions of a similar system. According to the results obtained by long‐term experimental measurements, the introduction of the photovoltaic panels considerably improves the operational and financial behaviour of the complete installation owing to the imposed significant battery capacity diminution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

12.
Hydrogen is considered to be an ideal energy carrier in the foreseeable future and can play a very important role in the energy system. A variety of technologies can be used to produce hydrogen. One of the most remarkable methods for large-scale hydrogen production is thermo-chemical water decomposition using heat energy from nuclear, solar and other sources. Detailed simulations of the two most promising water splitting thermo-chemical cycles (the Westinghouse cycle and the Sulphur-Iodine cycle) were performed in Aspen Plus code and obtained results were used for life cycle analysis. They were compared with two different processes for hydrogen production (coal gasification and coal pyrolysis). Some of the results obtained from LCA are also reported in the paper.  相似文献   

13.
Emissions of multiple hydrogen production pathways from fossil sources were evaluated and compared with that of fossil fuel production pathways in China by using the life cycle assessment method. The considered hydrogen pathways are gasoline reforming, diesel reforming, natural gas reforming, soybean‐derived biodiesel (s‐biodiesel) reforming, and waste cooking oil‐derived biodiesel reforming. Moreover, emissions and energy consumption of fuel cell vehicles utilizing hydrogen from different fossil sources were presented and compared with those of the electric vehicle, the internal combustion engine vehicle, and the compression ignition engine vehicle. The results indicate both fuel cell vehicles and the electric vehicle have less greenhouse gas emissions and energy consumption compared with the traditional vehicle technologies in China. Based on an overall performance comparison of five different fuel cell vehicles and the electric vehicle in China, fuel cell vehicles operating on hydrogen produced from natural gas and waste cooking oil‐derived biodiesel show the best performance, whereas the electric vehicle has the worse performance than all the fuel cell vehicles because of very high share of coal in the electricity mix of China. The emissions of electric vehicle in China will be in the same level with that of natural gas fuel cell vehicle if the share of coal decreases to around 40% and the share of renewable energy increases to around 20% in the electricity mix of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
以国际标准化组织的生命周期评价标准为依据,确定了车用燃料生命周期评估的系统边界和评价指标,给出了模型主要的计算公式,并进行了国外车用燃料全生命周期的能源消耗和排放评价。  相似文献   

15.
Solar energy itself is generally considered as environmentally friendly, nevertheless it is still important to take into consideration the environmental impacts caused by production of thousands of solar thermal systems. In this work the standard LCA methodology has been extended to analyse the total environmental impacts of a new more efficient solar thermal system SOLARSTORE during its whole life cycle. This system is being developed by a 5th Framework EC project. The LCA results show that to produce 1 GJ energy with SOLARSTORE system will result in global warming potential of 6.3–10 kg CO2, acidification potential of 46.6–70 g SO2, eutrophication of 2.1–3.1 g phosphate and photochemical oxidant of 0.99–1.5 g C2H4. The raw material acquisition and components manufacturing processes contribute 99% to the total environmental impacts. In comparison with traditional heating systems, SOLARSTORE system provides a considerably better solution for reduction of negative environmental impacts by using solar energy more efficiently.  相似文献   

16.
Heavy-duty trucks, in particular class 8 tractor-trailer combinations for freight, are a major contributor to the total greenhouse gas (GHG) emissions in transportation systems worldwide. Diesel fuel vastly dominates this market due to its relatively low operating cost. However, both GHG and air pollutant emissions from diesel combustion are significant, which raises doubts about the long-term sustainability of this mode of transportation. A possible short-term opportunity to address this problem is to blend diesel with hydrogen by retrofitting existing fuel injection systems and fuel storage onboard the trucks. Thus, a life cycle assessment is conducted to evaluate the overall environmental and economic impacts of implementing hydrogen and diesel dual-fuel solutions in heavy-duty trucks. The results show a significant reduction in emissions, proportionally to the diesel displacement ratio. Importantly, the use of hydrogen fuel is also shown to provide potential cost savings in this highly cost-sensitive application for hydrogen pricing below C$4/kg. Hence, waste hydrogen available at low cost can facilitate immediate emission reduction and operational cost savings for existing truck fleets, and act as an economical bridge solution for sustainable heavy-duty freight.  相似文献   

17.
Recently, there has been a growing interest in harnessing renewable energy resources particularly for electricity generation. One of the main concerns in the design of an electric power system that utilizes renewable energy sources, is the accurate selection of system components that can economically satisfy the load demand. This depends on the load that ought to be met, the capacity of renewable resources, the available space for wind machines and solar panels, and the capital and running costs of system components. Once size optimization is achieved, the autonomous system must be controlled in order to correcly match load requirements with instantaneous variation of input energy. In this paper, a new formulation for optimizing the design of an autonomous wind-solar-diesel-battery energy system is developed. This formultation employs linear programming techniques to minimize the average production cost of electricity while meeting the load requirements in a reliable manner. The computer program developed reads the necessary input data, formulates the optimization problem by computing the coefficients of the objective function and the constraints and provides the optimum wind, solar, diesel, and battery ratings. In order to study the effect of parameters predefined by the designer on the optimum design, several sensitivity analysis studies are performed, and the effects of the expected energy not served, the load level, the maximum available wind area, the maximum available solar area, and the diesel engines' lifetime are investigated. A controller the monitors the operation of the autonomous system is designed. The operation of this controller is based on three major policies; in the first, batteries operate before diesel engines and hence the storage system acts as a fuel saver, while in the second diesel engines are operated first so that the unmet energy is lower but the fuel cost is high. According to the third policy, the supply is made through diesel engines only. This is done for the purpose of making a performance comparison between the isolated diesel system and the hybrid renewable energy system. The proposed optimization and control techniques are tested on Lebanese data. Although three different control policies have been adopted in this work, the software is able to accommodate other policies.  相似文献   

18.
The transit authority in Perth, Western Australia, has put several alternative fuel buses, including diesel-electric hybrid and hydrogen fuel cell buses, into revenue service over the years alongside conventional diesel and natural gas buses. Primary data from this fleet is used to construct a Life Cycle Cost (LCC) model, providing an empirical LCC result. The model is then used to forecast possible scenarios using cost estimates for next generation technologies. The methodology follows the Australian/New Zealand Standard for Life Cycle Costing, AS/NZS 4536:1999. The model outputs a dollar value in real terms that represents the LCC of each bus transportation technology. The study finds that Diesel buses deliver the lowest Total Cost of Ownership (TCO). The diesel-electric hybrid bus was found to have a TCO that is about 10% higher than conventional diesel. The premium to implement and operate a hydrogen bus, even if industry targets are attained, is still substantially greater than the TCO of a conventional diesel bus, unless a very large increase in the diesel fuel price occurs. However, the hybrid and hydrogen technologies are still very young in comparison to diesel and economies of scale are yet to be realised.  相似文献   

19.
A comprehensive life cycle assessment (LCA) is carried out for three methods of hydrogen production by solar energy: hydrogen production by PEM water electrolysis coupling photothermal power generation, hydrogen production by PEM water electrolysis coupling photovoltaic power generation, and hydrogen production by thermochemical water splitting method using S–I cycle coupling solar photothermal technology. The assessment also contains an evaluation of four environmental factors which are global warming potential, acidification potential, ozone depletion potential, and nutrient enrichment potential. After conducting a quantitative analysis of all three methods with environmental factors being considered, a conclusion has been drawn: The global warming potential and the acidification potential of the thermochemical water splitting by S–I cycle coupling solar photothermal technology are 1.02 kg CO2-eq and 6.56E-3 kg SO2-eq. And this method has significant advantages in the environmental impact of the whole ecosystem.  相似文献   

20.
The investigation of the use of phase change materials (PCM) in the building sector has become a significant issue and a field exhibiting significant potential in terms of research and development. The present study evaluates the integration of PCMs in office buildings on the basis of their economic and environmental performance by means of life cycle analysis (LCA) in conjunction with life cycle cost analysis (LCCA) respectively. This study is based on a previous building envelope multiobjective optimization study which considers cooling load requirements and thermal comfort conditions as optimization objectives. Specifically, this work moves 1 step further to evaluate the optimal results obtained from the above‐mentioned optimization study based on economic and environmental aspects. This paper attempts to evaluate and quantify the environmental and economic potential of PCM use in office buildings in a generic way. In detail, the present study starts by examining whether reducing the extent of the environmental impact achieved during the operational phase from energy savings offsets the respective increase arising from the PCM production. The LCA results reveal that the overall life cycle impact of the 2 office units examined is reduced, despite the respective impact of the construction stage increasing significantly, given the high proportion of impact accruing from the energy use stage in the overall impact. Finally, a life cycle cost evaluation assesses the viability of such applications, with the conclusion that the energy saving achieved during the use stage in both office units is insufficient to compensate for the LCC increase induced by the high cost of construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号