首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The irreversible model of a concentrating photovoltaic cell/heat engine system with three‐band spectrum splitting is established for the further prediction of the conversion efficiency of photovoltaic/thermal systems, in which the internal and external irreversible losses are considered. An update efficiency of the spectrum splitting system is derived, from which the maximum efficiency of the whole system is calculated. The influences of the area ratio of two subsystems on the systemic performance are analyzed in detail. The reasonable ranges of the area ratio are given. The maximum efficiency and the corresponding critical parameters are obtained under different operating conditions. It is found that the introduction of the area ratio is significant for accurate predictions of systemic performances and the maximum efficiency can attain 77.64%, which significantly exceeds that of an individual concentrating photovoltaic cell and solar‐driven heat engine at the same concentration condition. The performance characteristics of the two‐band spectrum splitting system including the photovoltaic cell and heat engine may be directly obtained from the present model. Moreover, the performances of three‐ and two‐band spectrum splitting systems are compared, and consequently, the advantages of the three‐band spectrum splitting system are revealed.  相似文献   

2.
The exergetic efficiency of heat receiver in solar thermal power system is optimized by considering the heat loss outside the receiver and fluid viscous dissipation inside the receiver. The physical models of heat loss and pumping power consumption for solar heat receiver are first proposed, and associated exergetic efficiency is further induced. As the flow velocity rises, the pumping power consumption and heat absorption efficiency significantly rises, and the maximum absorption efficiency and optimal incident energy flux also increase. Along the flow direction of solar receiver, the exergy flux increment and the flow exergy loss almost linearly increase, while the exergetic efficiency varies very slowly at high flow velocity. According to the exergetic efficiency loss from flow viscou’s dissipation, the exergetic efficiency of solar heat receiver will first increase and then decrease with the flow velocity. Because of the coupling effects of heat absorption efficiency and exergetic efficiency from fluid internal energy, the exergetic efficiency of solar heat receiver will approach to the maximum at proper inlet temperature. As a result, the exergetic efficiency of solar heat receiver will reach the maximum at optimal inlet temperature, incident energy flux and flow velocity.  相似文献   

3.
Radiation energy transfer is modeled as the enthalpy flux of photons across the boundary of a thermodynamic system. It is proved that this energy transfer process can be treated as heat transfer. Compression work must be applied to the system to push the photons out. The energy transfer rate and maximum conversion efficiency computed from the model are identical to those determined from the Stefan–Boltzmann law and the Carnot efficiency for blackbody radiation.  相似文献   

4.
Optimum aperture size and operating temperature of a solar cavity-receiver   总被引:1,自引:0,他引:1  
For solar cavity-receivers operating at high temperatures, the optimum aperture size results from a compromise between maximizing radiation capture and minimizing radiation losses. When the absorbed solar energy is utilized as high temperature process heat, the energy conversion efficiency can be represented as the product of the energy absorption efficiency and the Carnot efficiency. We describe a simple, semiempirical method to determine the optimum aperture size and optimum operating temperature of a solar cavity-receiver for which its energy conversion efficiency is maximum. Such optimization strongly depends on the incident solar flux distribution at the aperture plane of the receiver. We analytically examine the case of a Gaussian distribution of the incident power flux, and we compare theoretical results with the results obtained when using an optically measured flux distribution. Using Monte-Carlo ray tracing, we further investigate the influence of sunshape on the optimal parameters of a cavity-receiver in a paraboloidal concentrator.  相似文献   

5.
Lu Jianfeng  Yang Jianping 《Solar Energy》2010,84(11):1879-1887
The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux.  相似文献   

6.
This paper presents a periodic analysis of a three zone solar pond as a solar energy collector and long term storage system. We explicitly take into account the convective heat and mass flux through the pond surface and evaluate the temperature and heat fluxes at various levels in the pond during its year round operation by solving the time dependent Fourier heat conduction equation with internal heat generation resulting from the absorption of solar radiation in the pond water. Eventually, an expression, for the transient rate at which heat can be retrieved from the solar pond to keep the temperature of the zone of heat extraction as constant, is derived. Heat retrieval efficiencies of 40.0 per cent, 32.1 per cent, 28.3 per cent and 25.5 per cent are predicted at collection temperatures of 40, 60, 80 and 100°C, respectively. the retrieved heat flux exhibits a phase difference of about 30 to 45 days with the incident solar flux; the load levelling in the retrieved heat flux improves as the thickness of the non-convective zone increases. the efficiency of the solar pond system for conversion of solar energy into mechanical work is also studied. This efficiency is found to increase with collection temperature and it tends to level around 5 per cent at collection temperatures about 90°C.  相似文献   

7.
Available solar exergy in an absorption cooling process   总被引:1,自引:0,他引:1  
Using the global solar radiation on a flat plate converter of selective surface, the process temperature, the ambient temperature and the characteristics of the collector as initial data; the maximum available exergy for feeding a lithium bromide absorption cooling machine and its daily distribution in Madrid is determined. The conversion of solar radiation into exergy is calculated through the Müser endoreversible engine. The model, which takes into account the relative Sun-Earth movements, the presence of the atmosphere, the transitory regime, the losses to the surroundings and the losses caused by the heat capacities effect, allows a maximum hourly exergy efficiency of the available heat between 11 and 14.6% and a daily exergy efficiency in the order of 3% to be obtained. The maximum available daily exergy varies from 800 kJ/(m2 day) for a very hot clear day to 950 kJ/(m2 day) for a warm clear day.  相似文献   

8.
The basic physical model of solar receiver pipe with solar selective coating is established, and associated heat transfer and exergetic performances are analyzed and optimized. Because of the heat losses of natural convection and infrared radiation, the energy absorption efficiency has a maximum at optimal incident energy flux. As the pipe radius decreases or flow velocity rises, the wall temperature drops for higher heat transfer coefficient, while the heat absorption efficiency increases. Along the flow direction, the heat absorption efficiency almost linearly decreases, while the exergetic efficiency will first increase and then decrease. As the inlet temperature rises, the heat absorption efficiency of the solar receiver pipe decreases, while the exergetic efficiency of absorbed energy obviously increases, so the exergetic efficiency of incident energy will reach maximum at the optimal inlet temperature. Additionally, the maximum exergetic efficiency of incident energy and optimal inlet temperature both increase with flow velocity.  相似文献   

9.
This paper provides an experimental investigation on the performance of a low-temperature differential Stirling engine. In this study, a twin power piston, gamma-configuration, low-temperature differential Stirling engine is tested with non-pressurized air by using a solar simulator as a heat source. The engine testing is performed with four different simulated solar intensities. Variations of engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number, obtained from the testing of the engine, is also investigated. The results indicate that at the maximum simulated solar intensity of 7145 W/m2, or heat input of 261.9 J/s, with a heater temperature of 436 K, the engine produces a maximum torque of 0.352 N m at 23.8 rpm, a maximum shaft power of 1.69 W at 52.1 rpm, and a maximum brake thermal efficiency of 0.645% at 52.1 rpm, approximately.  相似文献   

10.
Systems using molten salt as thermal media have been proposed for solar thermal power generation and for synthetic fuel production. We have been developing molten salt solar receivers, in which molten salt is heated by concentrated solar radiation, in the Solar Hybrid Fuel Project of Japan. A cavity shaped receiver, which is suitable for a beam-down type solar concentration system, was considered. In order to design molten salt solar receivers, a numerical simulation program for the prediction of characteristics of receivers was developed. The simulation program presents temperature distributions of a receiver and molten salt with the use of heat flux distribution of solar radiation and properties of composing materials as input data. Radiation to heat conversion efficiency is calculated from input solar power and heat transferred to molten salt. The thermal resistance of molten salt and the maximum discharge pressure of molten salt pumps were taken into account as restrictions for the design of receivers. These restrictions require control of maximum receiver temperature and pressure drop in the molten salt channel. Based on the incident heat flux distribution formed with a 100 MWth class beam-down type solar concentration system, we proposed a shape of solar receiver that satisfies the requirements. The radiation to heat conversion efficiency of the designed receiver was calculated to be about 90%.  相似文献   

11.
The overall efficiency of solar thermal power plants is investigated for estimating the upper limit of their practical performances. This study consists of the theoretical optimization of the heat engine and the optimization of the overall system efficiency, which is the product of the efficiency of the solar collector and the efficiency of the heat engine. In order to obtain a more realistic performance of the solar thermal power plant, the solar collector concentration ratio, the diffused solar radiation and the convective and radiative heat losses of the solar collector are taken into account. Instead of the classical Carnot efficiency, the efficiency at maximum power is used as the optimal conversion efficiency of a heat engine. By means of simple calculations, the optimal overall system efficiency and the corresponding operating conditions of the solar collector are obtained. The results of the present work provide an accurate guide to the performance estimation and the design of solar thermal power plants.  相似文献   

12.
In this paper, the performances of a four power-piston, gamma-configuration, low-temperature differential Stirling engine are presented. The engine is tested with air at atmospheric pressure by using a solar simulator with four different solar intensities as a heat source. Variations in engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number obtained from the testing of the engine is also investigated. The results indicate that at the maximum actual energy input of 1378 W and a heater temperature of 439 K, the engine approximately produces a maximum torque of 2.91 N m, a maximum shaft power of 6.1 W, and a maximum brake thermal efficiency of 0.44% at 20 rpm.  相似文献   

13.
In this paper, a new thermodynamic model for photothermal solar radiation conversion into mechanical through a heat engines is proposed. The developed equations allow for the energy and exergy contents of solar radiation to be found, as well as the energy and exergy efficiencies corresponding to concentration type solar-thermal heat engines operating under a range of conditions. The calculation method remains accurate to other published models when their assumed conditions are imposed to the newly developed model. The heat flux absorbed by the receiver (which is assumed to be a grey body and is placed in the focal point of the solar concentrator) depends on the hemispherical absorptivity and emissivity, concentration ratio and receiver temperature. The model is used to conduct a parametric study regarding the energy and exergy efficiencies of the system for assessing its performance. The use of a selective grey body receiver (having a reduced emissivity and a high absorptivity) for enhancing the conversion efficiency is also studied. If the absorptivity approaches one and the emissivity is low enough the photothermal conversion efficiency becomes superior to the known black body receiver limit of 0.853. It is found that in the limit of receiver emissivity tending to zero and absorptivity lending to one, the present model gives the exergy content of solar radiation because the work generated reaches its maximum. In this situation the energy efficiency approaches the exergy efficiency at 1-ITTIN0/TINS where TS and T0 are the sun and ambient temperatures, respectively. The influence of the ambient temperature on the exergy and energy efficiencies becomes apparent, with effects of up to 15%, particularly for high absorptivity and low emissivity. The heat transfer conductances at sink and source of the heat engine have a considerable impact on the efficiency of solar energy conversion. The present model is developed in line with actual power system operations for better practical acceptance. In addition, some irreversibility parameters (absorptivity, emissivity, heat transfer conductivity, etc.) are studied and discussed to evaluate the possible photothermal solar radiation conversion systems and assess their energy and exergy efficiencies.  相似文献   

14.
The objectives of this paper are to introduce a new heat engine and evaluate its performance. The new heat engine uses a gas, such as air, nitrogen, or argon, as the working fluid and extracts thermal energy from a heat source as the energy input. The new heat engine may find extensive applications in renewable energy industries, such as concentrating solar power (CSP). Additionally, the heat engine may be employed to recover energy from exhaust streams of internal combustion engines, gas turbine engines, and various industrial processes. It may also work as a thermal‐to‐mechanical conversion system in a nuclear power plant and function as an external combustion engine in which the heat source is the combustion gas from an external combustion chamber. The heat engine is to mimic the performance of an air‐standard Otto cycle. This is achieved by drastically increasing the time duration of heat acquisition from the heat source in conjunction with the timing of the heat acquisition and a large heat transfer surface area. Performance simulations show that the new heat engine can potentially attain a thermal efficiency above 50% and a power output above 100 kW under open‐cycle operation. Additionally, the heat engine could significantly reduce CSP costs and operate in open cycles, effectively removing the difficulties of dry cooling requirement for CSP applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrogen drives the big wheel of nature. Hydrogen nuclear fusion in the sun produces light and heat. Solar flux reaching the earth's surface in an hour is far more than global annual energy demand. Photosynthesis traps 100-TW solar energy annually into biomass on land at 0.1% efficiency that is about six times more than global yearly energy demand. All photosynthetic organisms (photoautotroph) annually convert 100-billion tons of carbon in the atmosphere into biomass. The rampant rise in energy demand requires to replicate natural photosynthesis process artificially to convert solar energy and Carbon dioxide (CO2) in liquid and burnable gaseous fuels. Chemists, physicists and biologists are collaborating to develop suitable catalysts for artificial photosynthesis. There is a consensus the sun can fuel transport sector by hydrogen and power grid by photo-electricity. It is well in time to develop a full spectrum of solar technologies instead of keeping ourselves plugged to hydrocarbon honey. Photocathodes and catalysts can mediate water splitting using nature-inspired artificial photosynthesis. Economic hydrogen production can accomplish the grand energy transition from fossil fuels to sustainable and renewable energy sources. This paper reviews the recent advances in artificial photosynthesis technologies and presents our work on the microbial fuel cell for hydrogen production and points out technical barriers and operational challenges.  相似文献   

16.
The present electricity grid installation cost as well as the tariff is quite high in India, particularly remote rural areas, to electrify houses. These problems can be easily solved by installing standalone systems that operate on one of the clean energy sources such as solar energy. An experimental analysis of generating electricity from a thermoelectric generator (TEG) powered by a solar parabolic dish concentrator device with aperture area and focal length of 12.6 m2 and 2.42 m, respectively, is presented in this article. A TEG is made up of a thermoelectric module connected to a flat receiver by an absorber layer. The studies were carried out in Indian climatic conditions at the National Institute of Technology, Puducherry. Over a spectrum of beam radiation, the system's maximum energy conversion efficiency, as well as efficient electrical output, are evaluated and presented. The proposed system's average effective electrical efficiency is 0.424%, corresponding to the TEG's average energy conversion efficiency of 2.76%.  相似文献   

17.
It is proven that a solar absorption heat transformer affected by the irreversibility of finite-rate heat transfer may be modelled as an equivalent combined system consisting of a solar collector and an endoreversible absorption heat transformer, the latter being further treated as a combined cycle having an endoreversible heat pump driven by an endoreversible heat engine. The maximum coefficient of performance of the system is determined, based on the linear heat loss model for solar collectors and the general optimum relation for endoreversible absorption heat transformers. The optimality problems concerning the primary performance parameters of the system are discussed. The results obtained here may serve as a good guide for the evaluation of existing real solar absorption heat transformers or provide some theoretical bases for the optimal design of future solar absorption heat transformers. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
Heat engines will usually be designed somewhere between the two limits of (1) maximum efficiency, which corresponds to “Carnot” or reversible operation, albeit at zero power, and (2) maximum power point. Each of these limits implies a specific dependence of heat engine efficiency on the temperatures of the hot and cold reservoirs between which the heat engine operates. We illustrate that the energetically optimal operating temperature for solar-driven heat engines is relatively insensitive to the engine design point. This also pertains to solar collectors whose heat loss can range from predominantly linear (conductive/convective) to primarily radiative. Potential misconceptions are also discussed regarding the maximum power point and the Curzon-Ahlborn efficiency of “finite-time thermodynamics.”  相似文献   

19.
This paper presents a theoretical analysis of a salt gradient solar pond as a steady state flat plate solar energy collector. We explicitly take into account the convective heat and mass flux through the pond surface and evaluate the temperature and heat fluxes at various levels in the pond by solving the Fourier heat conduction equation with internal heat generation resulting from the absorption of solar radiation as it passes through the pond water. These evaluations, in combination with energy balance considerations, enable the derivation of the expressions for solar pond efficiency of heat collection as well as the efficiency of heat removal. The efficiency expressions are Hottel-Whillier-Bliss type, prevalent for flat plate collectors. Numerical computations are made to investigate the optimization of geometrical and operational parameters of the solar pond. For given atmospheric air temperature, solar insolation and heat collection temperature, there is an optimum thickness of nonconvective zone for which the heat collection efficiency is maximum. The heat removal factor is also similar to that of a flat plate collector and the maximum efficiency of heat removal depends on both the flow rate and the temperature in the nonconvective zone.  相似文献   

20.
In this paper, a small non‐imaging focusing heliostat is presented, and an analytical model for assessing its performance is described. The main novelty of the system lies in the tracking mechanism and the mirror mount, which are based on off‐the‐shelf components and allow a good trade‐off between accuracy and costs. The concentrator mirrors are moved by this two‐axis tracking machinery to reflect the sun's rays onto a fixed target, the dimensions of which can be varied to suit the user's needs. A prototype plant to be located in central Italy was designed and simulated with a ray‐tracing algorithm, and it comprises 90 heliostats for a total reflective area of 7.5 m2. The reflected solar rays are tracked taking the mechanical positioning errors of the tracking system into account. The total flux of radiation energy hitting the target was determined, and intensity distribution maps were drawn. Simulations showed that the system's optical efficiency can exceed 90% in summer, despite the tracking errors, mainly because of the smaller distance between the heliostats and the receiver. The solar concentration ratio over a receiver of 250 mm in diameter reached 80 suns with a very good uniformity. Over a 400‐mm receiver, the concentrated radiation was less uniform, and the solar concentration ratio reached 50 suns, with a higher optical efficiency and collected solar radiation. The present concentration ratio is still suitable for many applications ranging from the electric power production, industrial process heat, and solar cooling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号