首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical formulations are presented for the fire growth processes under external radiant heating. They included ignition, burning and energy release rate, and flame spread. The behaviour of these processes with external heating is described along with the critical conditions that limit them. These include the critical heat fluxes for ignition, flame spread and burning rate. It is shown how these processes and their critical conditions depend on a limited number of properties measurable by a number of standard test methods. The properties include heat of combustion, the heat of gasification, ignition temperature and the thermal properties of the material. Alternatively, the properties could be related to parameters easily found from data; namely: (1) the critical heat flux (CHF) for ignition; (2) the slope of the energy release rate with externally imposed flux, defined as heat release parameter (HRP); and (3) the ignition parameter, defined as thermal response parameter (TRP). It is further shown that the flame heat flux differences between small laminar flame ignition sources and larger turbulent flames can affect flame spread due to heat flux and ignition length factors. Finally, it is found that the critical energy release rates theoretically needed for ignition, sustained burning, and turbulent upward flame spread are roughly 13, 52, and 100 kW/m2, respectively, and independent of material properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Flame spread experiments were conducted in an ASTM E 1321 lateral ignition and flame transport (LIFT) apparatus and a reduced scale ignition and flame spread test (RIFT) adaptation of the cone calorimeter. Wood‐based products were tested and a flame spread model was applied to the results to obtain the flame spread parameter and the minimum heat flux required for flame spread. The materials used were plywood, medium density fibreboard, hardboard, two‐particle board products, Melamine (Melteca) covered products with two types of wood substrate along with New Zealand grown Rimu, Beech, Macrocarpa and Radiata Pine. The RIFT gave comparable results to the LIFT for several of the materials investigated. There appeared to be an effective limit on suitable materials that can be successfully tested in the RIFT to those that have a minimum flux for flame spread of less than 7kW/m2. This limitation was due to the rapid decay of the heat flux profile along the sample and the lower resolution dictated by the smaller size of the RIFT apparatus. It was found that the limit on the minimum heat flux for flame spread was approximately equivalent to a minimum ignition flux of 18kW/m2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Yong Wang  Jun Zhang 《火与材料》2012,36(3):231-240
Small‐scale fire tests including the Underwriters Laboratories 94 (UL94) vertical burning test and the cone calorimeter test are widely used. In this paper, the ignition times of materials heated by the conical heater of a cone calorimeter and the UL94 flame were measured. It was found that for polymer bars heated by the UL94 flame, the ignition time is relatively short and increases with the specimen thickness. But the contribution of the specimen thickness to the delay of the ignition time is limited. The intrinsic properties of materials play a more important role in the ignition time than the specimen thickness. In addition, respectively corresponding to one‐dimensional, two‐dimensional, and three‐dimensional heat transfer, three heating modes of the UL94 flame were presented and compared with the conical heater. It was found that whether the heat source is the conical heater or the UL94 flame, the ignition time depends on the heat flux and the multidimensional heat transfer. The ignition time decreases with the increasing heat flux, and the magnitude order of the ignition time might drop when the heating mode changes from one‐dimensional to multidimensional heat transfer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper documents the first of the two interrelated studies that were conducted to more fundamentally understand the scalability of flame heat flux, the motivation being that it has been reported that flame heat flux back to the burning surface in bench‐scale experiments is not the same as for large‐scale fires. The key aspect was the use of real scale applied heat flux up to 200kW/m2 which is well beyond that typically considered in contemporary testing. The main conclusions are that decomposition kinetics needs to be included in the study of ignition and the energy balance for steady burning is too simplistic to represent the physics occurring. An unexpected non‐linear trend is observed in the typical plotting methods currently used in fire protection engineering for ignition and mass loss flux data for several materials tested and this non‐linearity is a true material response. Using measured temperature profiles in the condensed phase shows that viewing ignition as an inert material process is inaccurate at predicting the surface temperature at higher heat fluxes. The steady burning temperature profiles appear to be invariant with applied heat flux. This possible inaccuracy was investigated by obtaining the heat of gasification via the ‘typical technique’ using the mass loss flux data and comparing it to the commonly considered ‘fundamental’ value obtained from differential scanning calorimetry measurements. This comparison suggests that the ‘typical technique’ energy balance is too simplified to represent the physics occurring for any range of applied heat flux. Observed bubbling and melting phenomena provide a possible direction of study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an experimental and numerical investigation of the effects of intumescent coating and nanoparticles on the burning behaviors of flaxboard. Virgin flaxboard samples and those coated with intumescent coatings (with/without nanoparticles) were tested in the cone calorimeter and single burning item (SBI) test. Experimental results show a significant increase in the time to ignition and also a reduction in the heat release rate by the intumescent coatings. In order to explain quantitatively and predict the effects of the intumescent coating, a global fractional factor (the ratio of the heat flux at the interface of the intumescent surface and the char layer of flaxboard to the surface heat flux when there is no intumescent coating layer) was introduced based on analytical solutions for charring materials. The fractional factor for the intumescent coatings was found by comparing predictions to the experimental data in the cone calorimeter test and, subsequently, was incorporated in an upward flame spread model, along with the ignition and thermal properties deduced from the ignition tests, to predict the burning rates in the SBI tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The ignition of bedding and subsequent vertical spread of fire along the side of a noncombustible surrogate bed set was investigated. One‐hundred‐eight (108) tests were conducted to assess the ignition timeline and subsequent vertical flame spread of bedding up the side of a bed along with the thermal impact of the bedding fire on the underlying bed set. The ignition source for all tests was comprised of the flame from a book of matches placed on bedding at floor level at the base of the bed. The bedding consisted of combinations of a cotton/polyester blend sheet and bedspread. Ignition occurred in 3 to 10 seconds for the majority of the test. The speed of subsequent vertical flame spread, assessed through video frame analysis tools, was dependent on the exposed bedding material with an exposed sheet exhibiting faster spread. Thermal exposure from the burning bedding to the vertical sides of the bed set was assessed with an array of thermocouples embedded at the surface of the sides of the underlying bed set. The time to thermal exposure was found to be a function of the vertical flame spread and thickness of the bedding material(s).  相似文献   

8.
Flame‐retardant properties of nylon 6/organically modified montmorillonite (OMMT) thin films, fibers, and fabrics were investigated to determine the efficacy of condensed‐phase flame‐retardant mechanism in relation to montmorillonite concentration, sample geometry, and flame test conditions. Horizontal flame spread conducted on thin films revealed no significant difference in burning behavior between nylon 6 and nanocomposites with 5 wt% OMMT. However, with a higher concentration level of 8–10 wt% OMMT, the films burned without any dripping. The flame spread rate was reduced by 30–40% as compared with nylon 6 films. Cone calorimeter study on nanocomposite films showed that the peak heat release rate of nylon 6 was reduced by 65–67% with 8–10 wt% OMMT. Undrawn nanocomposite monofilaments with 10 wt% OMMT burned slowly and steadily in Bunsen flame without dripping. In cone calorimeter, nanocomposite fabrics with 8 wt% OMMT showed reduced heat release rate and mass loss rate compared to nylon 6 fabrics with increase in fabric tightness factor. The mass loss rate was about 40–60% less when compared with nylon 6 fabrics. The fabric char structure remained intact after burning. This demonstrated the interdependence of fabric tightness factor, OMMT concentration, and source of heat flux in forming a protective char and affecting the flammability of fabrics. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ignition tests conducted in the cone calorimeter and the FIST apparatus with tests conducted using the FMVSS 302 horizontal flame spread apparatus. Ten materials were selected as representative of those used as seat coverings of private and commercial passenger vehicles. The time to ignition of new and used materials subject to exposure heat fluxes between 20 kW/m2 and 40 kW/m2 was measured. The results from the ignition tests were analysed using thermally thick and thermally thin theoretical models. The critical heat flux for sustained piloted ignition was determined from the time to ignition data using the thermally thin approach. Derived ignition temperatures from both the thermally thick and thermally thin methods were compared with measurements using a thermocouple attached to the back surface of materials in selected tests. The flame spread rates in the FMVSS 302 apparatus were determined and a comparison was made between the performance of the materials in the flame spread apparatus, the cone calorimeter and the FIST. The results suggests that a critical heat flux criterion could be used to provide an equivalent pass/fail performance requirement to that specified by the horizontal flame spread test although further testing is needed to support this. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Full‐scale fire experiments were carried out in an ISO room to study the behaviour of commonly used cellulosic lining materials in real fire conditions. In addition to the temperature measurements recommended by the ISO 9705, temperature recordings were made at each node of grid lines on the wall lining surfaces. Four lining materials were chosen to represent different types of products and the surface spread of classifications determined using the BS 476 Part 7 flame spread test environment. The linings included fire retarded, melamine faced and non‐fire retarded boards which facilitated a comparative study of the behaviour of these materials with respect to ignition, flame spread, heat release rate and time to flashover. Corner fire scenarios were used in all the experiments. A T shape flame spread pattern on the surface of the two adjacent walls was observed prior to flashover. Prior to the onset of flashover conditions, downward opposed flow surface flame spread to the wall/ceiling intersection. For the non‐retarded wood based materials, such as plywood and medium density fibre board, flashover conditions occurred approximately 4 min after the start of the experiment. However, the fire retarded chipboard ignition was delayed by some 11 min 45 s after which flame spread was very rapid with flashover occurring within a further 1 min 45 s. An explanation for this particular behaviour is the considerable pre‐heating which occurred during the pre‐ignition period. For the fire retarded linings, much higher surface temperatures were recorded compared with those for non‐fire retarded linings. It was found that the areas of the fire retarded linings facing the source flame suffered extensive pyrolysis and charring which penetrated to the rear surface of the lining. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents the results from a set of 11 large‐scale open fire tests performed on flexible polyurethane foam slabs/mattresses. The purpose of the study was to investigate the influence of the ignition location on the fire behaviour of the foam slabs and to generate data on a highly characterised material that could be used for modelling work in the future. A method for obtaining spatially resolved flame spread data for this type of material was presented using a gridded array of 5 × 10 thermocouples placed on the underside the foam slab and from this, flame spread was examined using three different approaches. The heat release rate (HRR) results showed clear shapes forming that were dependent on the ignition location, with two distinct behaviours being observed between the various different ignition locations, this was also observed in the calculated flame spread rate (FSR) data. Results within an individual test, showed the calculated range of FSRs over the geometry of the slab varied between approximately 1 and 8 mm/s depending on the ignition location. The average FSR values between tests varied between 3 and 7 mm/s and the maximum and minimum values were calculated to be approximately 11 and 2 mm/s respectively.  相似文献   

12.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   

13.
The development of methods to predict full‐scale fire behaviour using small‐scale test data is of great interest to the fire community. This study evaluated the ability of one model, originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project, to predict heat release rates. Polyurethane foam specimens were tested in the furniture calorimeter using both centre and edge ignition locations. Input data were obtained using cone calorimeter tests and infrared video‐based flame area measurements. Two particular issues were investigated: how variations in incident heat flux in cone calorimeter tests impact heat release rate predictions, and the ability of the model to predict results for different foam thicknesses. Heat release rate predictions showed good agreement with experimental results, particularly during the growth phase of the fire. The model was more successful in predicting results for edge ignition tests than for centre ignition tests and in predicting results for thinner foams. Results indicated that because of sensitivity of the burning behaviour to foam specimen geometry and ignition location, a single incident heat flux could not be specified for generating input for the CBUF model. Potential methods to determine appropriate cone calorimeter input for various geometries and ignition locations are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of heat flux levels on burning behavior and heat transmission properties of hybrid fabrics and composites has been investigated using cone calorimeter and heat transmission techniques. The hybrid fabric structures woven out of E‐glass (warp) and polyether ether ketone (PEEK) (weft) and E‐glass (warp) and polyester (weft) have been studied at high heat flux levels keeping in view the flame retardant requirements of structural composites. The performance of the glass–PEEK fabric even at high heat flux levels of 75 kW/m2 was comparable with the performance of glass–polyester fabric evaluated at 50 kW/m2. The results further demonstrate that glass–PEEK hybrid fabrics exhibit low peak heat release rate, low heat release rate, low heat of combustion, suggesting an excellent combination of materials and fall under the low‐risk category and are comparable with the performance of carbon fiber‐epoxy‐based systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The effect of melting behaviour on upward flame spread of thermoplastic materials when subjected to small ignition sources and considered to suffer no external flux was studied using large-scale tests. For moderate fire conditions the cone calorimeter was utilized, with the sample set in a vertical orientation to study the melting behaviour of the specimens. Under these conditions the results indicate that the melting behaviour significantly affects upward flame spread behaviour. A pool of the melt which formed at the base of the vertically oriented sample tested creates a pool fire which then controls the fire growth and flame spread. In contrast, it was found that some thermoplastic materials which have higher glass transition temperatures or undergo a special pyrolysis process such as depolymerization, intumescing or charring do not experience significant melting behaviour when exposed to the same thermal insult. As a result, they behave very differently in terms of upward flame spread. The study also indicates that the melting behaviour of thermoplastic materials is an important characteristic in fires which should be taken into account in the development of modelling, in particular for upward flame spread models. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
The dynamic flammability of flame‐retardant composites that consist of high‐density polyethylene (HDPE) and ethylene–propylene–diene rubber (EPDM) and other additives, and can be used as wire‐ and cable‐insulation materials, was studied before and after irradiation. The data for the heat‐release rate (HRR), the time to ignition, the specific extinction area and the concentrations of CO and CO2 from the burning process of cone colorimeter tests were assessed. By blending HDPE with EPDM, the HRR of HDPE was reduced and the residue char of the composite increased. The HRR of HDPE/EPDM was further reduced and the residue char of HDPE/EPDM was further increased after irradiation. The oxygen index, mechanical properties, and thermal stability of the composites, and the morphology of the char formed in the cone calorimeter test, were also investigated. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
The study presented addresses the fire behaviour of polypropylene compounded with six classes of flame retardants. The application of cone calorimetry for the assessment of the thermal characteristics of the tested materials and their comparison with thermogravimetry are the central point of this research. This study only presents data for 25 kW/m2 of incident heat flux exposure and includes five tests for polypropylene with no additives and five tests for polypropylene with flame retardants based on triglycidylisocyanurate and lignin. The data collected include the rate of heat release, mass loss rate, char yield, time to ignition and time of total combustion. Results represent meaningful comparison between the behaviour of the materials under simulated fire conditions, using the cone calorimeter, and in the slow dynamic environment utilized in thermogravimetric analysis. © 1998 John Wiley & Sons Ltd.  相似文献   

18.
Seven halogen‐free flame retardant (FR) compounds were evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Performance of wires coated with the compounds was evaluated using industry standard flame tests. The results suggest that time to peak heat release rate (PHRR) and total heat released (THR) in cone calorimetry (and THR and temperature at PHRR in PCFC) be given more attention in FR compound evaluation. Results were analyzed using flame spread theory. As predicted, the lateral flame spread velocity was independent of PHRR and heat release capacity. However, no angular dependence of flame spread velocity was observed. Thus, the thermal theory of ignition and flame spread, which assumes that ignition at the flame front occurs at a particular flame and ignition temperature, provides little insight into the performance of the compounds. However, results are consistent with a heat release rate greater than about 66kW/m2 during flame propagation for sustained ignition of insulated wires containing mineral fillers, in agreement with a critical heat release rate criterion for burning. Mineral fillers can reduce heat release rate below the threshold value by lowering the flaming combustion efficiency and fuel content. A rapid screening procedure using PCFC is suggested by logistic regression of the binary (burn/no‐burn) results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The structure and dynamics of a natural buoyant turbulent diffusion flame near a vertical surface with combustible gas exhaustion are numerically studied by using the FDS model and computer code. The flame is considered near the surface through which gaseous propylene is injected with a prescribed flow rate. Requirements are determined for the grid cell size in the near-wall region, which ensure sufficient spatial resolution of the boundary layer structure. It is shown that the predicted value of the total heat flux at the surface agrees with the measured results. Investigations of ignition and combustion of a vertical plate of non-charring thermoplastic (polymethylmetacrylate) with allowance for the material pyrolysis reaction show that the ignitor parameters determine the duration of the transient period, but weakly affect the growth of the heat release rate and the height of the pyrolysis region at the stage of developed burning. Significant effects of the ignitor shape, size, and temperature, as well as lateral entrainment of air on the velocity of the upward flame spread rate over the plate surface and on the shape of the pyrolysis front are revealed. The existence of critical parameters of the ignitor separating flame decay from developed burning is demonstrated. Three flame spread regimes with different pyrolysis front shapes are identified.  相似文献   

20.
As long as 20 years ago the need was considered to extend codes concerned with flammability and/or flame spread, to include combustion toxicity requirements. Due to the lack of suitable toxicity tests at that time, the added code requirements for combustion toxicity were not enforceable. Vinyl resin manufacturers have been cited as purveyors of hazardous materials which, when burned, generate a noxious toxic hazard due to the fumes they produce in a fire. Overlooked are such factors that commercial vinyl products have inherent low ignition and flame spread rates and only generate potentially toxic gases when quantities of other materials burning around them heat the vinyls to the decomposition point. In 1983 New York State commissioned a study by A. D. Little Inc. to assess the feasability of incorporating combustion toxicity requirements into building material and furnishing codes of New York State. This paper summarizes these findings, including evaluation and analysis of the data generated by the two tests selected as best meeting the seven critical criteria. Due to differnt combustion toxicity rankings provided by the two test methods, controversial and confusing interpretations reign. As a result, the author provides a four step set of recommendations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号