首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adsorption icemaker with energy storage system is proposed for the utilization of medium temperature solar energy. In this system, the solar energy collected by parabolic trough collector (PTC) was used to provide the heat source for the adsorption icemaker. The performance of the icemaker is tested and the experimental results showed that the highest COP reached 0.15 while the COPsr could be 0.08 and the ice making capacity was 50 kg per day with 20 m2 PTC and 30 kg compound adsorbent (calcium chloride + activated carbon) when the desorption temperature, condensing temperature and the direct normal solar radiation were 105 °C, 30 °C and 3 kWh/day·m2, respectively.  相似文献   

2.
An experimental and numerical model of a solar chimney was proposed in order to predict its performance under varying geometrical features in Iraqi environmental conditions. Steady, two dimensional, turbulent flow was developed by natural convection inside an inclined solar chimney. This flow was investigated numerically at inclination angles 15° to 60°, solar heat flux 150–750 W/m2 and chimney thickness (50, 100 and 150) mm. The experimental study was conducted using a single solar chimney installed on the roof of a single room with a volume of 12 m3. The chimney was 2 m long; 2 m wide has three gap thicknesses namely: 50, 100 and 150 mm. The performance of the solar chimney was evaluated by measuring the temperature of its glass cover, the absorbing wall and the temperature and velocity of induced air. The results of numerical model showed that; the optimum chimney inclination angle was 60° to obtain the maximum rate of ventilation. At this inclination angle, the rate of ventilation was about 20% higher than 45°. Highest rate of ventilation induced with the help of solar energy was found to be 30 air changes per hour in a room of 12 m3 volumes, at a solar radiation of 750 W/m2, inclined surface angle of 60°, aspect ratio of 13.3 and chimney length of 2 m. The maximum air velocity was 0.8 m/s for a radiation intensity of 750 W/m2 at an air gap of 50 mm thickness. No reverse air flow circulation was observed even at the largest gap of 150 mm. The induced air stream by solar chimney can be used for ventilation and cooling in a natural way (passive), without any mechanical assistance.  相似文献   

3.
In this paper, thermal models of all types of solar collector‐integrated active solar stills are developed based on basic energy balance equations in terms of inner and outer glass temperatures. In this paper, hourly yield, hourly exergy efficiency, and hourly overall thermal efficiency of active solar stills are evaluated for 0.05 m water depth. All numerical computations had been performed for a typical day in the month of 07 December 2005 for the climatic conditions of New Delhi (28°35′N, 77°12′E, 216 m above MSL). The thermal model of flat‐plate collector integrated with active solar still was validated using the experimental test set‐up results. Total daily yield from active solar still integrated with evacuated tube collector with heat pipe is 4.24 kg m?2 day?1, maximum among all other types of active solar stills. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

The present study was aimed at examining the effect of using solar panels and cylindrical parabolic collectors, or CPCs, on solar still unit. Cooling of the solar panels up to 25°C has been also conducted in order to rise the amount of produced freshwater. In the first setup, the solar still unit has been made up of 300 W and 600 W solar panels along with the CPC devices of lengths 1 m and 2 m outside for water heating. The second setup was designed in a way that water is heated by the solar panels as well as the CPC device with the copper pipe circulation inside the solar still unit, so the hot water within the pipe has raised the temperature of the water as a heat exchanger inside the solar still. Based on the results, the second setup had a higher efficiency than the first setup. Moreover, the highest amount of fresh water was 4.215 kg and 5.091 kg during one day in the first setup and the second setup, respectively. Cases 1 to 6 are related to the first setup and cases 7 to 12 are related to the second setup. The lowest fresh water production in case 1 was 2.852 kg. the highest water temperature in experimental setup 1 was 71.9 °C and in experimental setup 2 was 84.8°C.  相似文献   

5.
A mathematical model based on one‐dimensional energy and mass balance across the solar chimney has been developed. The air flow characteristics such as exit velocity and temperature are evaluated with respect to the collector inclination angle, hourly solar radiation, ambient temperature, and wind speed. The model is validated by comparing the performance parameters obtained, with the experimental results and also with the experimental data of different geometrical range and environmental conditions from the literature. An average deviation of 8% for exit air velocity and 1.35% for exit air temperature is obtained for the solar chimney with absorber inclination angle 30°, collector area 0.41 m2, and chimney height 0.24 m. The experimental daily average and maximum exit air velocity during the month of April are 0.5 and 0.88 m/s, respectively. The predicted optimum operating conditions are 75° inclination angle, 0.63 m2 absorber area, and 0.48‐m chimney height. The maximum average exit air velocity and temperature numerically obtained are 0.64 m/s and 331 K, respectively, when operating with optimum conditions. It is observed that the exit air velocity increases 33% by increasing the absorber area from 0.5 to 3 m2 for a solar chimney with 0.5 m height. An increase in exit air velocity of 52% was obtained by increasing the chimney height from 0.5 to 3 m for a solar chimney with 0.64 m2 absorber area. A reduction in exit air velocity of 4% was observed for the increment in wind flow over the glass cover from 1.5 to 3 m/s. These results confirm that the solar chimney could be designed based on the predicted monthly performance by the present model.  相似文献   

6.
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation.  相似文献   

7.
A mathematical model has been used to predict the operating parameters of a desiccant wheel for performance analysis of the desiccant wheel. The model considered both gas and solid side resistance. The model shows a good agreement with experimental data. An experimental setup was fabricated using an evacuated tube solar air collector with a desiccant wheel. The hot air needed for regeneration is produced by the evacuated tube solar air collector, which has a collector surface area of 4.44 m2 . The regeneration can be started from 40 °C. The temperature of outlet air obtained is in the range of 40–65 °C in this evacuated tube solar air collector. The experimental setup was installed at NIT Kurukshetra, India, 29° 58′ (latitude) North and 76° 53′ (longitude) East. Numerical results showed that both the moisture removal and the temperature increment of the process air increases with an increasing regeneration air temperature, regeneration air inlet velocity, and process inlet moisture. But both the moisture removal and the temperature increment of the processed air decreases by increasing the process air inlet velocity and regeneration air moisture at the inlet. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21031  相似文献   

8.
The performance of a “V” corrugated-plate solar air heater was investigated experimentally. The collector was tilted at 20° in summer and 40° in winter for maximum heat collection during the period of maximum solar irradiance. The collector performance parameters were evaluated during clear days in winter and summer. The mass flow rate of air was varied from 0.016 to 0.0385 kg/s·m2, and an air outlet temperature of 70°C was obtained in summer at midday with an average collector efficiency of 42%. The contribution of solar energy from the collector for winter space heating was estimated.  相似文献   

9.
This study presents a thermal design of solar-powered adsorption refrigeration with the type of activated carbon-methanol pair. The designed module consists of an evacuated glass tube equipped with a parabolic solar concentrator as generator, sorption bed, evaporator, and condenser units. A thermodynamic design procedure and a mathematical model of a steady state system with activated carbon refrigerator have been developed. The adsorber is heated by solar energy collected by a parabolic solar concentrator. The temperature of the working pair in the adsorber, the amount of methanol leaving and reabsorb bed, and the refrigerated box was estimated. An optimize design of the system to achieve higher cycle COP was presented. Maximum cycle COP = 0.576 and COPnet = 0.375 with T max reached 157.8°C, T B = 57.5°C, M ac = 0.907 kg, and the concentration of methanoldesorped equal to 0.206 kg/kg ac .  相似文献   

10.
In this study, an indirect forced convection solar drying system was tested for drying of palm oil fronds. The drying of 100 kg of palm oil fronds via solar drying system reduced the moisture content from 60% (w.b) to 10% (w.b) in 22 h (3 d of drying). During the drying process, the daily mean values of the drying chamber inlet temperature, drying chamber outlet temperature, drying chamber air temperature, and solar radiation ranged from 26 °C to 75 °C, 25 °C–65 °C, 26 °C–67 °C, and 96 W/m2 to 1042 W/m2 respectively, with corresponding average values of 53 °C, 46 °C, 48 °C, and 580 W/m2. At average solar radiation of about 600 W/m2 and air flow rate 0.13 kg/s, the collector, drying system and pick-up efficiencies were found about 31%, 19% and 67% respectively. The specific moisture extraction rate (SMER) was 0.29 kg/kWh. The exergy efficiency varied between 10% and 73%, with an average of 47%. In addition, the improvement potential of solar drying system for palm oil fronds ranged from 8 W to 455 W, with an average of 172 W.  相似文献   

11.
Ultra-thin-channel solar water collector efficiency (UCSWC) was investigated theoretically and experimentally. An ultra-thin-channel solar water collector was constructed using several flat plates with an ultra-thin fluid channel formed using an adjustable flexible silicon frame inserted between the absorber plate and bottom plate. The advantages of the ultra-thin-channel solar water collector are low absorber plate temperature and low total water mass flow rate, resulting in considerable collector efficiency improvement with high outlet fluid temperature and low pump power requirement. A simple and general modeling method was developed to predict the collector efficiencies and mean temperatures of the glass cover, absorber plate and fluid. Good agreement was achieved between the calculated and experimental values. The superior collector efficiencies of the UCSWC are obtained as 82.2% and 75.5% for the inlet temperatures 30°C and 70°C, respectively, operating at a total fluid mass flow 8.3 × 10?3 kg/s and solar radiation incident of 1100 W/m2.  相似文献   

12.
《Energy》2004,29(2):211-224
This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 °C of ambient air temperature, 50 to 60 °C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m3/s of drying air flow rate and 200 to 950 W/m2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve.Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli–Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ2) of 4.6572 10−5.  相似文献   

13.
A compound parabolic concentrator (CPC) for solar energy applications is presented in this work. A prototype was built and its thermal performance was determined. Operating temperatures of the order of 150 °C with a reasonable efficiency can be attained by means of a fixed CPC.  相似文献   

14.
《Applied Thermal Engineering》2007,27(2-3):330-346
A novel solar water heating system, modified cuboid solar integrated-collector-storage (ICS) system with transparent insulation material (TIM) has been designed and developed, which combines collection and storage in a single unit and minimizes the nocturnal heat losses. A comprehensive study has been carried out to evaluate the heat transfer characteristics inside the enclosure of the system to enhance the collection and storage of solar energy. The transient behavior of the modified-cuboid solar integrated-collector-storage system is investigated numerically to evolve optimum configuration. The optimum design for the system is obtained by carrying out a numerical parametric study with different geometry parameters like the depth of the cuboid (d = 2, 5, 8, and 12 cm), and inclination angles (10°, 20°, 30°, and 50°). The inside heat transfer coefficient of the ICS system, stratification factor and water temperature distribution inside the enclosure have been predicted by numerical simulation. Average heat transfer coefficient at the bottom surface of absorber plate is 20% higher for depth of 12 cm as compared to the 2 cm depth of cuboid section, after 2 h of heating. The stratification factor also increases from 0.02 to 0.065 as depth of the system increases from 2 cm to 12 cm. There is a marginal effect of inclination angles of the system on the convection in the enclosure. As the inclination angle increases from 10° to 50°, the average heat transfer coefficient increases from 90 W/m2 K to 115 W/m2 K. But the stratification factor is comparatively high for lower inclination angles. With the optimum design parameters, a field experimental set-up was built and the numerical model was validated for efficient heat collection and storage in a modified cuboid ICS system. The model is in good agreement with the experimental results.  相似文献   

15.
In this study, electricity and hydrogen production of an integrated system with energy and exergy analyses are investigated. The system also produces clean water for the water electrolysis system. The proposed system comprises evacuated tube solar collectors (ETSCs), parabolic trough solar collectors (PTSCs), flash turbine, organic Rankine cycles (ORC), a reverse osmosis unit (RO), a water electrolysis unit (PEM), a greenhouse and a medium temperature level geothermal resource. The surface area of each collector is 500 m2. The thermodynamics analysis of the integrated system is carried out under daily solar radiation for a day in August. The fluid temperature of the medium temperature level geothermal resource is upgraded by ETSCs and PTSCs to operate the flash turbine and the ORCs. The temperature of the geothermal fluid is upgraded from 130 °C to 323.6 °C by the ETSCs and PTSCs. As a result, it is found that the integrated system generates 162 kg clean water, 1215.63 g hydrogen, and total electrical energy of 2111.04 MJ. The maximum energy and exergy efficiencies of the overall system are found as 10.43% and 9.35%, respectively.  相似文献   

16.
This paper presents the thermal analysis of the process of heat extraction by circulating water layer through the convective zone of a partitioned solar pond. The observed variation of atmospheric air temperature and solar intensity is assumed periodic. Explicit expressions for the transient rate and temperature at which heat can be extracted by circulation of water at constant flow rate, are derived. Numerical computations corresponding to solar heat flux and atmospheric air temperature measurement at New Delhi during the year 1974 have been made, and the optimization of the flow rate as well as the depth of the convective-non-convective zones in the pond have been investigated. The optimum heat retrieval efficiency of 27.5%, 34% and 40% corresponding to heat retrieval temperatures of 97°C, 60.5°C and 45.5°C, respectively, are predicted for water flow rates of 2 × 10?4, 5 × 10?4 and 10?3 kg/s.m2, respectively. The load levelling in retrieved heat flux improves as flow rates are lowered, and the non-convective zone is oversized. With the non-convective zone depth near optimum, an increase in the depth of the heat extraction zone considerably influences the retrieved heat flux; it shifts its maximum to winter months and deteriorates the load levelling. The variability in flow rate required for the maintenance of constant temperature of the heat extraction zone is also investigated. It is found that the required variability is less for higher temperatures of the extraction zone and larger depths of non-convective zone.  相似文献   

17.
The common solar water heater system can meet low temperature requirements, but exhibits very low efficiency in attaining higher water temperatures (55–95 °C). In the current paper, a compound parabolic concentrator (CPC)-type solar water heater system experiment rig with a U-pipe was set up, and its performance in meeting higher temperature requirements was investigated. The experiments were conducted in December at Hefei (31°53′ N, 117°15′ E), in the eastern region of China. The system showed steady performance in winter, with overall thermal efficiency always above 43%. The water in the tank was heated from 26.9 °C to 55, 65, 75, 85, and 95 °C. Through the experimental study and exergetic analysis of the solar water heater system, results of the five experiments showed thermal efficiency of above 49.0% (attaining 95 °C water temperature) and exergetic efficiency of above 4.62% (attaining 55 °C water temperature). Based on these results, the CPC-type solar water heater system with a U-pipe shows superior thermal performance in attaining higher temperatures and has potential applications in space heating, heat-powered cooling, seawater desalination, industrial heating, and so on.  相似文献   

18.
ABSTRACT

In this paper, theoretical analysis of receiver tube misalignment, the design of secondary reflector and experimental analysis of a small-sized solar parabolic trough collector (PTC) with and without secondary reflectors are represented. Experimental analysis of PTC has been done using a parabolic secondary reflector (PSR) and triangular secondary reflector (TSR) and compared with PTC without secondary reflector (WSR). The maximum outlet temperature of heat transfer fluid is observed as 49.2°C, 47.3°C and 44.2°C in the case of PSR, TSR and WSR conditions, respectively. The maximum thermal efficiency of 24.3%, 22.5% and 17.8% is observed in the case of PSR, TSR and WSR conditions, respectively. The circumferential temperature difference on the outer surface of the receiver tube is obtained more uniform in the case of PSR and TSR than WSR condition. This indicates that the use of a secondary reflector can improve the performance of a solar PTC system.  相似文献   

19.
Solar parabolic trough collector (PTC) is the best recognized and commercial‐industrial‐scale, high temperature generation technology available today, and studies to assess its performance will add further impetus in improving these systems. The present work deals with numerical and experimental investigations to study the performance of a small‐scale solar PTC integrated with thermal energy storage system. Aperture area of PTC is 7.5 m2, and capacity of thermal energy storage is 60 L. Paraffin has been used as phase change material and water as heat transfer fluid, which also acts as sensible heat storage medium. Experiments have been carried out to investigate the effect of mass flow rate on useful heat gain, thermal efficiency and energy collected/stored. A numerical model has been developed for the receiver/heat collecting element (HCE) based on one dimensional heat transfer equations to study temperature distribution, heat fluxes and thermal losses. Partial differential equations (PDE) obtained from mass and energy balance across HCE are discretized for transient conditions and solved for real time solar flux density values and other physical conditions of the present system. Convective and radiative heat transfers occurring in the HCE are also accounted in this study. Performance parameters obtained from this model are compared with experimental results, and it is found that agreement is good within 10% deviations. These deviations could be due to variations in incident solar radiation fed as input to the numerical model. System thermal efficiency is mainly influenced by heat gain and solar flux density whereas thermal loss is significantly influenced by concentrated solar radiation, receiver tube temperature and heat gained by heat transfer fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of the present work is to enhance the thermal management avoiding the high-thermal stress on the outer surface of the parabolic trough receiver (PTR) derived from nonuniform concentrated solar flux distribution. A parabolic trough concentrating (PTC) system with second homogenizing reflector (HR) is numerically designed and optimized to ensure a uniform concentrated solar flux on the PTR walls. For this purpose, a three-dimensional optical model has been developed to analyze quantitatively the improvement made by the HR using the optical efficiency and qualitatively basing on the uniformity of the solar flux density distribution over the entire surface of the PTR. The validation of the numerical tool is presented, and the algorithm of the design process has been proposed and detailed. As a preliminary trait, it was revealed that the peak of the designed system performance is achieved with a rim angle of 68° avoiding simultaneously the aberration and the blocking effects. Despite the optical efficiency decrease by about 7% compared with the conventional PTC design, the uniformity of the solar flux distribution has been strongly improved such that the maximum local solar flux density gradient is decreased from 80 to 11 kW/m2 equivalent to a decrease of 86.25% with respect to the conventional PTC and the average local density is about 25.5 kW/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号