首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为满足全光采样系统对低时域抖动、窄脉冲宽度和高重复频率飞秒光纤激光器的需求,结合数值仿真,在实验的基础上利用非线性偏振旋转锁模原理,初步实现了自由运转被动锁模掺铒飞秒光纤激光器,激光器锁模输出脉冲的基本重复频率为6.028 MHz,平均输出功率为1.07mW,中心波长为l 570.3 nm,光谱宽度为33.2 nm,理...  相似文献   

2.
针对精密测量的实际应用需求,开发了具有6 MHz重复频率调谐范围的掺镱锁模光纤激光器。该光纤激光器利用啁啾光纤光栅实现色散补偿,可以实现不同色散域的锁模。实验中,系统研究了不同腔内净色散对锁模激光器输出特性和稳定性的影响,发现当具有一定负腔内净色散时,在不同的重复频率下都可以输出相同的光谱,同时输出光谱具有较好的高斯型。根据以上研究,特殊设计了稳定的简化腔结构和空间延迟线,同时优化了腔参数,保证了大范围的重复频率调谐和稳定的锁模运转。当中心重复频率为26 MHz 时,调谐比率达到23%。激光器稳定输出平均功率为3.23 mW的飞秒激光脉冲,去啁啾后脉冲宽度为347 fs。基于此,将光纤锁模激光器重复频率锁定于铷原子钟,在1 s的平均时间内获得了2×10?10的艾伦方差。  相似文献   

3.
利用NALM结构的被动锁模掺铒光纤激光器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究光纤中的非线性效应对锁模脉冲的影响,采用非线性放大环镜来实现被动锁模,在分析非线性放大环镜传输特性理论的基础上,对被动锁模掺铒光纤激光器进行了相关的实验研究。实验中观察到了重复频率为280.2MHz、中心波长是1556.235nm、线宽是0.4nm的稳定的锁模脉冲现象。研究结果对更深入地了解被动锁模产生现象、进一步开展后续研究具有极其重要的意义。  相似文献   

4.
高功率被动锁模2.0μm掺铥飞秒脉冲光纤激光器   总被引:2,自引:1,他引:2  
刘江  王璞 《中国激光》2012,39(9):902001-9
报道了高功率半导体可饱和吸收镜被动锁模的2.0μm掺铥飞秒脉冲光纤激光器的实验结果。该光纤激光器利用半导体可饱和吸收镜与宽带全反射镜来构成线型法布里-珀罗腔,自制的1550nm连续掺铒光纤激光器作为激光抽运源。当抽运功率为312mW时,开始得到稳定的重复频率为53MHz的锁模激光脉冲串。当抽运功率增加到472mW时,得到的最大平均输出功率为50mW,相应的最高单脉冲能量为0.94nJ;此时测得锁模激光脉冲的宽度为907fs,激光的中心波长为1939.5nm,3dB光谱带宽为4.6nm。  相似文献   

5.
掺Yb3 光纤环形腔锁模激光器的实验研究   总被引:4,自引:0,他引:4  
报道了以掺Yb^3+光纤作为增益介质的环形腔光纤激光器产生超短脉冲的实验研究。在掺Yb^3+光纤环形腔激光器中,通过调节偏振控制器(PC)的状态和减少腔内损耗,利用非线性偏振旋转效应实现被动锁模,通过改变泵浦功率分别获得了调Q锁模和锁模2种稳定运转状态。其中,调Q锁模的中心波长为1051nm,激光光谱宽度为11.5nm;锁模输出的中心波长为1051nm,激光光谱宽度为13.8nm,重复频率为19MHz。给出了实验结果并作了简要的分析。  相似文献   

6.
为了研究基于半导体可饱和吸收镜的被动锁模光纤激光器的输出特性,采用1480nm的半导体激光器作为抽运源,利用掺铒光纤作为增益介质,以及光纤环行器、偏振控制器、波分复用器和耦合器等构成了环形腔结构的被动锁模光纤激光器。实验中获得了峰值波长1586nm、光谱宽度4.8nm、重复频率11.2MHz、最大平均输出功率8.4mW的稳定锁模激光脉冲输出。结果表明,调整光纤偏振控制器会使光纤激光器输出脉冲的时域波形略微发生变化,在实际应用中需要注意偏振态变化对锁模光纤激光器输出脉冲时域特性的影响。这一结果对于半导体可饱和吸收镜在被动锁模光纤激光器中的应用及其特性具有一定帮助。  相似文献   

7.
超短脉冲掺Yb3+光纤激光器实验研究   总被引:3,自引:1,他引:3  
报道了使用976nm半导体激光器作为抽运源。以掺Yb^3 光纤作增益介质构成环形腔激光器产生超短脉冲的实验研究。在腔体净群速度色散为正的掺Yb^3 光纤环形腔激光器中,采用非线性偏振旋转的相加脉冲锁模技术。通过调节偏振控制器的方向和减少腔内损耗,实现稳定的锁模运转。用示波器观察光纤激光器在时域的输出特性,在抽运光一定的情况下,随着光偏振状态的变化,光纤激光器锁模激光的变化呈现稳定和不稳定两个区域。在不稳定锁模区域,激光为不规则的脉冲。通过仔细调节光纤偏振控制器的位置,当光纤偏振控制器在某一适当位置时。激光器工作在稳定的锁模区域。获得最大功率为9.46mW,脉冲激光光谱宽度为10nm.脉冲的重复频率为15.4MHz。  相似文献   

8.
石墨烯被动锁模谐波阶数可调的掺铒光纤孤子激光器   总被引:2,自引:2,他引:0  
采用石墨烯被动锁模的掺Er光纤(EDF)环形腔,获得稳定的谐波阶数可调的孤子脉冲激光。通过调节EDF环形腔中的偏振控制器(PC)改变光腔损耗,实现了锁模谐波从一阶至四阶的可控运转。连续锁模基频重复频率为3.873MHz,中心波长为1 557.6nm,谱线宽度为4.5nm,有明显孤子边带,信噪比(SNR)约为45dB,二、三和四次谐波锁模脉冲重复频率分别为7.745、11.618和15.491MHz。本文的实验结果可用工作于反常色散区锁模激光器的多孤子形成机理来解释。  相似文献   

9.
高重复频率的飞秒激光在高速激光测距和三维成像等领域有着非常重要的作用。其中基于飞秒光纤激光器的高次谐波锁模是获得GHz量级以上高重复频率脉冲的重要手段之一。基于含腔内光栅对色散补偿的非线性偏振旋转(NPR)锁模的掺镱(Yb)光纤激光器,在180 mW泵浦光时获得了稳定的143 MHz基频锁模脉冲序列,当泵浦光功率升至1 W时获得了最高20次谐波(2.86 GHz)锁模脉冲序列输出。系统地对比研究了基频锁模与高次谐锁模状态下,脉冲重复频率精密锁定后的艾伦偏差和相位噪声,7次谐波锁模状态下重复频率锁定精度能够保持在10?13 Hz@1 s的稳定度,为高次谐波锁模飞秒激光脉冲序列用于精密测量提供了实验依据。  相似文献   

10.
报道了一种L波段的高功率亚皮秒掺铒光纤激光器。在全光纤环形腔内熔接2个偏振控制器(PC)和偏振相关的光隔离器(ISO),基于非线性偏振旋转锁模原理实现了全光纤结构锁模激光脉冲输出。输出激光的中心波长为1603nm,脉冲重复频率为37.8 MHz,单脉冲能量为4nJ,平均输出激光功率为152mW。对此全光纤锁模激光器进行合理的色散控制,可得到脉冲宽度为370fs的锁模激光输出。实验中使用高掺杂浓度的掺铒光纤,有效减少了其使用长度,提高了抽运转换效率,实现了结构简单紧凑、性能稳定可靠的L波段亚皮秒光纤激光器。  相似文献   

11.
基于光子晶体光纤飞秒激光放大器的微纳加工系统   总被引:2,自引:1,他引:2  
以掺镱大模面积光子晶体光纤(PCF)飞秒激光放大器为光源组建了一套结构紧凑且运行稳定的飞秒激光微纳加工系统,中心波长为1040 nm,重复频率50 MHz,最大平均功率16 W,光栅压缩后脉冲宽度85 fs。利用该套系统在硅片、金属薄膜(Cr膜、Al膜)上演示了微图案的刻划,并与采用重复频率1 kHz的固体钛宝石飞秒激光放大器的加工结果进行对比,发现利用新组建的加工系统进行微纳加工,由于单脉冲能量较小且便于调节,使得刻划微图案时边缘加工效果更容易控制,且避免了加工过程中未加工区域受到的污染,保护了制作衬底。显示了该套系统高重复频率和高平均功率的特性及其在改善微纳加工效果及明显提高加工效率方面的优势。  相似文献   

12.
熔锥光纤倏逝场作用石墨烯双波长锁模掺镱光纤激光器   总被引:3,自引:0,他引:3  
报道了利用熔锥光纤石墨烯饱和吸收体实现1μm波段的双波长锁模掺镱光纤激光器(YDFL)。利用光学诱导沉积法,将水溶液中的石墨烯纳米复合物在光倏逝场的作用下沉积至熔锥光纤的锥腰部位。该石墨烯熔锥光纤器件作为可饱和吸收锁模部件具有制作灵活、全光纤结构以及高损伤阈值等优点。基于该器件的可饱和吸收及腔内双折射滤波特性,通过调节偏振控制器优化激光腔内偏振特性,实现了稳定的YDFL双波长锁模。该激光器的两个锁模波长分别为1034.77nm和1038.85nm,二次谐波锁模重复频率为1.09MHz,腔内单脉冲能量最大可达35nJ。  相似文献   

13.
The generation of high peak power femtosecond pulses from an all semiconductor laser system is demonstrated. The system is based on a passively modelocked two-section laser diode in an external cavity, a tapered amplifier and a compact external pulse compressor. Pulse durations are achieved below 600 fs with an average optical power above 500 mW at a repetition rate of 330 MHz. This corresponds to a peak power of 2.5 kW, which is the highest value reported for an all semiconductor ultrafast laser system so far.  相似文献   

14.
实现了一种单端光纤耦合的高重复频率、窄脉冲、窄线宽及高效率的主动声光调Q全光纤脉冲光纤激光器。该光纤激光器基于光纤光栅与平面镜组合而成的线性法布里-珀罗(F-P)腔结构,采用激光二极管与(2+1)×1抽运耦合器形成后向抽运,并利用单端光纤耦合声光调制器(AOM)实现了全光纤化结构的脉冲掺镱双包层光纤激光器。调Q声光开关工作在一级方向,反向输出调Q脉冲,重复频率20~100kHz可调。在重复频率50kHz、抽运功率5.7W下系统获得了输出激光功率2.64W、单脉冲能量528μJ、脉宽56ns、峰值功率943W的稳定的高效率、窄线宽的窄脉冲,中心波长在1080nm左右,线宽为0.06nm,光-光转换效率高达46%。  相似文献   

15.
78 fs被动锁模掺Er3+光纤激光器   总被引:7,自引:1,他引:7  
用性能稳定的976 nm激光二极管(LD)作为抽运光源,利用非线性偏振旋转(NPR)作为可饱和吸收体,实现了环形腔结构的被动锁模掺Er3 光纤激光器.在抽运功率为57 mW时,通过调节与波长无关的全光纤在线偏振控制器,获得了谱线宽度为40.8 nm,中心波长1544.0 nm,脉冲宽度为78 fs的稳定飞秒脉冲激光,其重复频率为11.18 MHz,平均输出光功率为5.4 mW,单个脉冲能量为0.5 nJ,峰值功率为6200 W.  相似文献   

16.
利用拍频反馈控制调制频率实现再生锁模的光纤激光器   总被引:3,自引:0,他引:3  
王林 《半导体光电》2002,23(5):308-311
根据EDFA中的传输方程分析了再生锁模光纤激光器的自启动过程,指出采用拍频反馈控制调制频率实现再生锁模光纤激光器运转的前提,是利用在工作波长范围内呈现反常色散特性的谐振腔所具有的自发调制现象来把腔内连续或准连续光的稳态打破以产生光脉冲.阐述了如何在再生锁模光纤激光器中行之有效地提取误差信号,并通过反馈来控制调制频率,从而在实验中保证了再生锁模光纤激光器在24h的连续运转中一直保持稳定的锁模状态.  相似文献   

17.
利用飞秒激光光镊捕获生物细胞   总被引:5,自引:1,他引:5  
采用自行搭建的飞秒激光光镊,实现了对人体血红细胞(RBC)的稳定捕获。使用的光源为自行搭建的掺钛蓝宝石克尔透镜锁模激光器,输出中心波长810nm、脉冲宽度40fs和重复频率为100MHz的飞秒激光脉冲。通过实验比较了飞秒激光光镊和连续(CW)激光光镊的捕获能力,依据实验数据,比较了两者的Q值。实验结果显示,飞秒激光光镊对于捕获生物细胞同样有效,将光镊技术和飞秒激光特性相结合用于生物学研究领域会有很好的应用前景。  相似文献   

18.
介绍了2005年诺贝尔物理学奖的获奖工作-用锁模飞秒激光光梳去测量光的频率.飞秒激光光梳技术大大简化了光频的测量.锁模飞秒激光通过光子晶体光纤时,由于自相位调制,在可见光和近红外区能够产生上百万等间隔的梳状频率,其频率间隔等于锁模脉冲的重复率.利用光频梳和倍频技术,把对光频的测量变为对射频的测量,这样就能够很容易地测出光的频率.使得光频测量精度和原子钟精度达到前所未有的高度,从而对物理学和计量学的发展有重要意义.  相似文献   

19.
刘江  王璞 《中国激光》2012,39(8):802004-26
研制了高功率全光纤结构2μm波段掺铥皮秒脉冲光纤激光器。该激光器采用了主振荡功率放大(MOPA)结构设计,种子源采用790nm的多模半导体激光器作为抽运源、双包层掺铥光纤作为激光增益介质、半导体可饱和吸收镜(SESAM)作为锁模器件,从而实现了重复频率为10.4MHz的皮秒激光脉冲输出,其最大平均输出功率为15mW。种子源经过一级掺铥光纤放大器后,获得了1.1W高平均功率输出,相应的单脉冲能量高达105nJ,激光脉冲宽度为9ps,峰值功率为11.6kW。此时测得激光脉冲的中心波长为1963nm,3dB光谱带宽为0.5nm。  相似文献   

20.
高能量全光纤结构被动锁模2.0μm掺铥超短脉冲光纤激光器   总被引:1,自引:2,他引:1  
刘江  徐佳  王潜  王璞 《中国激光》2012,39(6):602009-43
报道了高脉冲能量全光纤结构半导体可饱和吸收镜锁模的2.0μm波段掺铥超短脉冲光纤激光器。在抽运功率为1.8W时,开始得到稳定的重复频率为14.3MHz的锁模激光脉冲,平均输出功率为5mW;当抽运功率增加到3.8W时,最大平均输出功率达到59mW,相应的最高单脉冲能量为4.1nJ。此时测得锁模激光脉冲的脉宽为2.2ps,中心波长为2015nm,3dB光谱带宽为2.9nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号