首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel composite plating method has been developed for the fabrication of carbon nanotube/Ni (CNT/Ni) field emission cathode. The field emission properties of the initial CNT/Ni field emitter show a low turn-on electric field Eon of about 1.1 V/μm with an emission current density of 1 μA/cm2, and a low threshold electric field Eth of about 1.7 V/μm with an emission current density of 1 mA/cm2. After performing a stability test with a high emission current density in high vacuum, the corresponding microstructure and the degree of graphitization of the CNT/Ni field emitter were measured by using scanning electron microscopy and Raman spectroscopy. We found that the degree of graphitization slowly decreases with the duration time tFE of the stability test, the size of small rod-like CNT/Ni composite structures in the film increases with tFE, and obvious cracks appear in the film as tFE is larger than 60 h. The degradation of the field emission properties may be explained by the Joule heating effect on the CNT/Ni field emitter under high emission current density.  相似文献   

2.
The fabrication and field emission characteristics are reported for point-type carbon nanotube (CNT) emitters formed by transferring a CNT film onto a Ni-coated Cu wire with a diameter of 1.24 mm. A Ni layer plays a role in enhancing the adhesion of CNTs to the substrate and improving their field emission characteristics. On firing at 400 °C, CNTs appear to directly bonded to a Ni layer. With a Ni layer introduced, a turn-on electric field of CNT emitters decreases from 1.73 to 0.81 V/μm by firing. The CNT film on the Ni-coated wire produces a high emission current density of 667 mA/cm2 at quite a low electric field of 2.87 V/μm. This CNT film shows no degradation of emission current over 40 h for a current density of 60 mA/cm2 at electric field of 6.7 V/μm. X-ray imaging of a printed circuit board with fine features is demonstrated by using our point-type CNT emitters.  相似文献   

3.
A ballast resistor is utilized in a low density vertically aligned carbon nanotube array. Based on the nature of the ballast resistor, the uniformity of the emission improves remarkably. A highly stable field emission current is obtained under a constant voltage and a current density of 300 mA/cm2 is achieved. Joule heat generated by this field emission current increases the temperature of the CNT array significantly. The high temperature changes the emission to Schottky emission regime. The Schottky emission achieves 900 mA/cm2, which is three times the field emission current density. Simulation result shows the corresponding temperature is about 1700 K. A color change of the emission area is observed after the experiment. When compared to the conventional Schottky cathode, the emitter is self-heating and no extra heater is needed. This is the first report of a successful utilization of a ballast resistor in a CNT based emission array and the first observation of Schottky emission from a vertically aligned CNT array used as an electron emitter.  相似文献   

4.
We report novel two-dimensional (2D) shaped carbon nanotube (CNT) field emitters using triangular-shaped CNT films and their field emission properties. Using the 2D shaped CNT field emitters, we achieved remarkable field emission performance with a high emission current of 22 mA (equivalent to an emission current density >105 A/cm2) and long-term emission stability at 1 mA for 20 h. We also discuss the field emission behavior of the 2D shaped CNT field emitter in detail.  相似文献   

5.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

6.
A horizontally-aligned carbon nanotube (HACNT) field emission cathode was coated with a metallic glass thin film (MGTF) to improve the stability of the field emission properties. HACNT field emission cathodes have previously been fabricated on glass substrates using composite plating and crack-formation techniques. A carbon nanotubes/nickel (CNTs/Ni) composite film is deposited onto a glass substrate at 80 °C by the composite plating technique alone. Cracks are then formed in the CNT/Ni composite film during 30 min heating at 300 °C, and HACNTs are exposed in the cracks. The field emission properties of the HACNT field emission cathode show a low turn-on electric field Eon of about 2.3 V/μm, a low threshold electric field Eth of about 4.7 V/μm at an emission current density of 1 mA/cm2, and a stability time of 78 h. The degradation of the HACNT field emission cathode is prevented by using a MGTF-coating technique and superior long-term stability (i.e. >125 h, with 5 nm MGTF; >270 h, with 10 nm MGTF) for the MGTF/HACNT field emission cathode is achieved.  相似文献   

7.
A long time operation of field electron emission over 45,000 h was achieved using the screen printing carbon nanotube (CNT) emitter fabricated on an ITO coated glass substrate. The measurement was carried out in an ultra-high vacuum chamber at around 3 × 10 7 Pa in pressure with continuously applying voltage of rectangular pulses at 743 V or 730 V peak, 60 Hz frequency and 10% duty ratio. The emission current corresponding to the voltage pulse at 1.27 mA/cm2 density was repeatedly and reproducibly observed for more than 5 years. Because the operated condition was 10 times higher at the current density than that of the conventionally developed field emission lamps (FELs), the expected lifetime of the presented emitter will be 450,000 h though the vacuum level of the measurement was extremely higher than that of the actual operation of FELs. By investigating the morphology of the emitter after terminating the operation, it was found that sparse bundles of agglomerated CNTs were standing in the long lifetime CNT emitter.  相似文献   

8.
Carbon nanotube (CNT)-based point electron emitter was fabricated using a cavity-confined dielectrophoresis. The emission current of an individual multi-walled CNT (MWCNT) was stable up to 10 μA and reached ~ 2 mA (1.7 × 108 A/cm2), about three orders of magnitude higher than the threshold current of the existing single MWCNT tip. At low electric field, the current fluctuated in a stepwise manner. On the other hand, above critical field, CNT point emitter started to disintegrate so that the current fluctuated rapidly and gradually diminished. These anomalous behaviors were explained from the cap opening and field-induced unraveling of tip edges.  相似文献   

9.
Electron emission characteristics of needle-type semiconductor diamond electron emitters with pulsed bias operation were evaluated. An X-ray generation experiment was performed. Fowler–Nordheim plotting confirmed that field emission completely governed the electron emission. Maximum emission current of 4.2 mA was achieved using an n-type diamond needle. The needle tip, with area smaller than 1 μm2, had estimated electron emission density greater than 4.2 × 105 A/cm2. The effective emission area obtained from the Fowler–Nordheim plot was several 10? 13 cm2. For adopting and emission area of 1 × 10? 12 cm2, the estimated electron emission density was higher than 4.2 × 109 A/cm2. Furthermore, the average emission current was 0.5–0.6 mA. This large electron emission was continued for several seconds and repeatable. A threshold electric field existed for electron emission higher than 50 kV/mm; pulsed electron emissions of less than 30 ms were created by slow triangular waveform shaped bias voltage supplied at frequencies of 5–10 Hz. An improved vacuum level and pulsed bias operation prevented damage to diamond electron emitters and steady electron emission better than with thermoelectronic emission and high bias voltage supply in DC mode; continuous X-ray generation of 1 h was achieved.  相似文献   

10.
A hybrid material consisting of carbon nanotubes (CNTs) and carbon nanoflake balls (CNFBs) was successfully synthesized by microwave-plasma-assisted chemical vapor deposition using a H2/CH4/N2 ratio of 4:1:2 at 80 Torr for 30 min. The precursor used was a sol-gel solution containing ferric nitrate, tetrabutyl titanate, and n-propanol. The carbon hybrid material (CNFB-CNT) exhibited excellent field emission properties, with its turn-on field being 1.77 V/μm. It also showed two field enhancement factors (1536 and 7932) for different electric fields. The emission current density of the hybrid remained higher than 0.65 mA/cm2 for more than 50 h and was 0.82 mA/cm2 even after 50 h of continuous emission. Further, the field emission properties of the CNFB-CNT hybrid were better than those of other single-structured carbon nanomaterials (CNTs, CNFs, or CNFBs). Therefore, the CNFB-CNT hybrid material should be a promising candidate for use in high-performance field emitters.  相似文献   

11.
The electron field emission (EFE) properties of Si-nanowires (SiNW) were improved by coating a UNCD films on the SiNWs. The SiNWs were synthesized by an electroless metal deposition (EMD) process, whereas the UNCD films were deposited directly on bare SiNW templates using Ar-plasma based microwave plasma enhanced chemical vapor deposition (MPE–CVD) process. The electron field emission properties of thus made nano-emitters increase with MPE–CVD time interval for coating the UNCD films, attaining small turn-on field (E0 = 6.4 V/μm) and large emission current density (Je = 6.0 mA/cm2 at 12.6 V/μm). This is presumably owing to the higher UNCD granulation density and better UNCD-to-Si electrical contact on SiNWs. The electron field emission behavior of these UNCD nanowires emitters is significantly better than the bare SiNW ((E0)SiNWs = 8.6 V/μm and (Je)SiNWs < 0.01 mA/cm2 at the same applied field) and is comparable to those for carbon nanotubes.  相似文献   

12.
A facile catalyst-free approach using a simple thermal transport method has been developed to fabricate high-density AlN nanotips on flexible carbon cloth at large scales for use as field emission (FE) emitters. The AlN nanotips exhibit good performance as flexible cold-cathode electron emitters, with a very low turn-on electric field of 1.1–2.3 V μm−1, a low threshold electric field of 1.5–2.5 V μm−1, and a high emission current density. The excellent field emission properties of the AlN nanotips are attributed to the large field enhancement factor of 6895 as well as the combined effect of the tip profile of the AlN nanostructures and the excellent electron transport path of the conductive carbon cloth substrate.  相似文献   

13.
We have created a field emitter composed of a carbon nanotube (CNT) yarn, which was prepared by direct spinning through chemical vapor deposition and then formed into a carpet structure by tying the yarn to a conductive substrate before cutting it. The structure of the carpet is arranged to induce the tips of the CNT yarn to protrude toward the anode for maximum electron emission. The turn-on field, threshold field, and field enhancement factor of the device are 0.33, 0.48 V/μm, and 19,141, respectively. Extremely low operating electric fields and a high field enhancement factor result from the high density of CNT emitters with high crystallinity, the electrically good contact between the emitters and the substrate, and the effects of the multistage structure. The emission is stable even at a high current density of 2.13 mA/cm2, attributed to the strong adhesion between the emitters and the substrate. The emission performance is found to be customizable by adjusting the structure, for example, the CNT pile density. These results are relevant for practical applications, such as large-area flat-panel displays, large-area low-voltage lamps, and X-ray sources.  相似文献   

14.
We demonstrate a very efficient synthesis of vertically-aligned ultra-long carbon nanofibers (CNFs) with sharp tip ends using thermal chemical vapor deposition. Millimeter-scale CNFs with a diameter of less than 50 nm are readily grown on palladium thin film deposited Al2O3 substrate, which activate the conical stacking of graphitic platelets. The field emission performance of the as-grown CNFs is better than that of previous CNFs due to their extremely high aspect ratio and sharp tip angle. The CNF array gives the turn-on electric field of 0.9 V/μm, the maximum emission current density of 6.3 mA/cm2 at 2 V/μm, and the field enhancement factor of 2585.  相似文献   

15.
The field emission (FE) properties of vertically aligned carbon nanotube (CNT) arrays having a surface decorated with Ta layer were investigated. The CNTs with 6 nm thickness of Ta decoration showed improved FE properties with a low turn-on field of 0.64 V/μm at 10 μA/cm2, a threshold field of 1.06 V/μm at 1 mA/cm2 and a maximum current density of 7.61 mA/cm2 at 1.6 V/μm. After Ta decoration, the increased emission centres and/or defect sites on the surface of CNTs improved the field enhancement factor. The work function of CNTs with Ta decoration measured with ultraviolet photoelectron spectroscopy decreased from 4.74 to 4.15 eV with increasing Ta thickness of 0–6 nm. The decreased work function and increased field enhancement factor were responsible for the improved FE properties of the vertically aligned CNTs. Moreover, a significant hysteresis in the cycle-testing of the current density with rising and falling electric field process was observed and attributed to the adsorption/desorption effect, as confirmed by the photoelectron spectrum.  相似文献   

16.
Multi-wall nitrogenated carbon nanotubes (N-CNTs) are modified by the chlorine–plasma treatment (N-CNTs:Cl) and hence studied their field emission characteristics. It is observed that the turn-on voltage of N-CNTs is decreased from ~ 1.0 V/µm to ~ 0.875 V/µm on chlorination. The current density is enhanced from 1.3 mA/cm2 (N-CNTs) to ~ 15 mA/cm2 (N-CNTs:Cl) at an electric field of 1.9 V/µm. The X-ray absorption near edge structure spectra revels, the formation of different bonding of chlorine with carbon and nitrogen presence in the N-CNTs during the process of chlorine–plasma treatment by the charge transfer (or else) that increase the density of free charge carriers and hence enhanced the field emission characteristics of N-CNTs:Cl.  相似文献   

17.
We report the effect of carbon–oxygen atomic ratio (C/O ratio) on the field emission properties of the chemically reduced few-layer graphite oxide (GO). The field emission properties are found to be a non-monotonic function of the C/O ratio in a wide range of 2.06–14.80. Samples with C/O ratio of 6.98 show the lowest turn-on (1.80 MV/m), threshold fields (5.15 MV/m) and much higher current density (44.08 mA/cm2 at 9.00 MV/m). Long-time (10 h) current stability test of the GO at a high current density (~13 mA/cm2) resulted in the reduction of the GO. The samples with field emission induced reduction show the same non-monotonic effect of the C/O ratio on the field emission properties as that of the chemically reduced GOs. The average current fluctuation of the GO is higher than that of the reduced GO, which is due to the oxygen desorption during the electron emission. The effect of the carbon–oxygen bonds on the surface potential barrier of the reduced GO edges is proposed in detail for interpreting the experimental observations.  相似文献   

18.
Nitrogen-doped homoepitaxial diamond films were synthesized for application as low-temperature thermionic electron emitters. Thermionic electron emission measurements were conducted where the emission current was recorded as a function of emitter temperature. At a temperature < 600 °C an emission current was detected which increased with temperature, and the emission current density was about 1.2 mA/cm2 at 740 °C. The electron emission was imaged with photoelectron emission microscopy (PEEM) and thermionic field-emission electron microscopy (T-FEEM). The image displayed uniform electron emission over the whole surface area. Thermionic emission and ultraviolet photoemission spectroscopy were employed to determine the temperature dependent electron emission energy distribution from the nitrogen-doped homoepitaxial diamond films. The photoemission spectra indicated an effective work function of 2.4 eV at 550 °C. These values indicate reduced band bending and establish the potential for efficient electron emission devices based on nitrogen-doped homoepitaxial diamond.  相似文献   

19.
We present a rational field emitter array architecture composed of thin multi-walled carbon nanotube “loops” which simultaneously satisfies the important requirements for practical applications. We achieved low turn-on voltage (1.27 V/μm for 10 μA/cm2 emission), high enhancement factor (2400), uniformity, and long-term emission stability exceeding 10,000 h at 1 mA/cm2, where each of the values approaches or exceeds the highest reported values to date for field emission arrays.  相似文献   

20.
The electron field emission (EFE) properties of Si nanostructures (SiNS), such as Si nanorods (SiNR) and Si nanowire (SiNW) bundles were investigated. Additionally, ultrananocrystalline diamond (UNCD) growth on SiNS was carried out to improve the EFE properties of SiNS via forming a combined UNCD/SiNS structure. The EFE properties of SiNS were improved after the deposition of UNCD at specific growth conditions. The EFE performance of SiNR (turn-on field, E0 = 5.3 V/μm and current density, Je = 0.53 mA/cm2 at an applied field of 15 V/μm) was better than SiNW bundles (turn-on field, E0 = 10.9 V/μm and current density, Je < 0.01 mA/cm2 at an applied field of 15 V/μm). The improved EFE properties with turn-on field, E0 = 4.7 V/μm, current density, Je = 1.1 mA/cm2 at an applied field of 15 V/μm was achieved for UNCD coated (UNCD grown for 60 min at 1200 W) SiNR. The EFE property of SiNW bundles was improved to a turn-on field, E0 = 8.0 V/μm, and current density, Je = 0.12 mA/cm2 at an applied field of 15 V/μm (UNCD grown for 30 min at 1200 W).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号