首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质下吸式气化炉气化制备富氢燃气实验研究   总被引:1,自引:0,他引:1  
以制取富氢燃气为目标,在自热式下吸式气化炉反应器内,进行了生物质下吸式气化炉富氧/水蒸气及空气气化的制氢特性研究。实验结果表明,与空气气化相比,富氧/水蒸气气化可显著提高氢产率和产气热值。在实验条件范围内,最大氢产率达到45.16 g/kg;最大低位热值达到11.11 MJ/m3。在富氧/水蒸气气化条件下,燃气中H2+CO体积分数达到63.27%—72.56%,高于空气气化条件下的52.19%—63.31%。富氧/水蒸气气化条件下的H2/CO体积比比值为0.70—0.90,低于空气气化条件下的1.06—1.27。实验结果证实:生物质下吸式气化炉富氧/水蒸气气化是一种有效的制取可再生氢源的工艺路线。  相似文献   

2.
Biomass is a promising sustainable energy source. A tar-free fuel gas can be obtained in a properly designed biomass gasification process. In the current study, a tar-free biomass gasification process by air was proposed. This concept was demonstrated on a lab-scale fluidized bed using sawdust under autothermic conditions. This lab-scale model gasifier combined two individual regions of pyrolysis, gasification, and combustion of biomass in one reactor, in which the primary air stream and the biomass feedstock were introduced into the gasifier from the bottom and the top of the gasifier respectively to prevent the biomass pyrolysis product from burning out. The biomass was initially pyrolyzed and the produced char was partially gasified in the upper reduction region of the reactor, and further, char residue was combusted at the bottom region of the reactor in an oxidization atmosphere. An assisting fuel gas and second air were injected into the upper region of the reactor to maintain elevated temperature. The tar in the flue gas entered the upper region of the reactor and was decomposed under the elevated temperature and certain residence time. This study indicated that under the optimum operating conditions, a fuel gas could be produced with a production rate of about 3.0 Nm3/kg biomass and heating value of about 5000 kJ/Nm3. The concentration of hydrogen, carbon monoxide and methane in the fuel gas produced were 9.27%, 9.25% and 4.21%, respectively. The tar formation could be efficiently controlled below 10 mg/Nm3. The system carbon conversion and cold gasification efficiency reached above 87.1% and 56.9%, respectively. In addition, the investigation of energy balance for the scale-up of the proposed biomass gasification process showed that the heat loss could be recovered by approximately 23% of total energy input. Thus, partial fuel gas that was produced could be re-circulated and used to meet need of energy input to maintain the elevated temperature at the upper region of reactor for tar decomposition. It was predicted the heating value of product fuel gas would be 8000 kJ/Nm3 if the system was scaled up.  相似文献   

3.
《Fuel》2007,86(1-2):244-255
The dual fluidised bed gasification technology is prospective because it produces high caloric product gas free of N2 dilution even when air is used to generate the gasification-required endothermic heat via in situ combustion. This study is devoted to providing the necessary process fundamentals for development of a bubbling fluidized bed (BFB) biomass gasifier coupled to a pneumatic transported riser (PTR) char combustor. In a steam-blown fluidized bed of silica sand, gasification of 1.0 g biomass, a kind of dried coffee grounds containing about 10 wt.% water, in batch format clarified first the characteristics of fuel pyrolysis (at 1073 K) under the conditions simulating that prevailing in the gasifier intended to develop. The result shown that via pyrolysis more than 60% of fuel carbon and up to 75% of fuel mass could be converted into product gas, while the simultaneously formed char was about 22% of fuel mass. With all of these data as the known input, a process simulation using the software package ASPEN then revealed that the considered dual bed gasification plant, i.e. a BFB gasifier + a PTR combustor, is able to sustain its independent heat and mass balances to allow cold gas efficiencies higher than 75%, given that the fuel has suitable water contents and the heat carried with the product gas from the gasifier and with the flue gas from the char combustor is efficiently recovered inside the plant. In a dual fluidized bed pilot gasification facility simulating the gasification plant for development, the article finally demonstrated experimentally that the necessary reaction time for fuel, i.e. the explicit residence time of fuel particles inside the BFB gasifier computed according to a plug granular flow assumption, can be lower than 160 s. The results shown that varying the residence time from 160 to 1200 s only slightly increased the gasification efficiency, but the reaction time available in the PTR, say, about 3 s in our case, was too short to assure the finish even of fuel pyrolysis.  相似文献   

4.
《Fuel》2005,84(7-8):1019-1021
An integrated power generation cycle combining thermochemical recuperation, brown coal gasification and a solid oxide fuel cell (SOFC) was proposed based on the concept of thermochemical recuperative energy. Process simulation combining the coal gasifier, gas turbine cycle, and SOFC module was conducted using the ASPEN Plus process simulation tool. The simulation indicated that the cycle efficiency increases from 39.5% (HHV) without the SOFC to about 45% (HHV) with the SOFC.  相似文献   

5.
In this study, the design, construction and operation of an Internally Circulating Fluidized-bed Gasifier (ICFG) are introduced in detail. ICFG design provides a multi-stage gasification process, with bed material acting as the medium for char combustion and heat exchange by its internal circulation. And it is used for the steam gasification of animal waste at low temperature in view of producing fuel gas. The effects of pressure balance, pyrolysis temperature, catalytic temperature and steam/feedstock ratio on the gasifier performance (e.g. product gas yield, gas composition, tar content) are also discussed. Hydrogen-rich and low-tar product gas can be produced from the low-calorific feedstock, in the properly designed process together with high-performance catalyst.  相似文献   

6.
A one-dimensional stationary model of biomass gasification in a fixed bed downdraft gasifier is presented in this paper. The model is based on the mass and energy conservation equations and includes the energy exchange between solid and gaseous phases, and the heat transfer by radiation from the solid particles. Different gasification sub-processes are incorporated: biomass drying, pyrolysis, oxidation of char and volatile matter, chemical reduction of H2, CO2 and H2O by char, and hydrocarbon reforming. The model was validated experimentally in a small-scale gasifier by comparing the experimental temperature fields, biomass burning rates and fuel/air equivalence ratios with predicted results. A good agreement between experimental and estimated results was achieved. The model can be used as a tool to study the influence of process parameters, such as biomass particle mean diameter, air flow velocity, gasifier geometry, composition and inlet temperature of the gasifying agent and biomass type, on the process propagation velocity (flame front velocity) and its efficiency. The maximum efficiency was obtained with the smaller particle size and lower air velocity. It was a consequence of the higher fuel/air ratio in the gasifier and so the production of a gas with a higher calorific value.  相似文献   

7.
The performance of a small-scale two-staged gasification system is reported. In this system wood chips are gasified with a fixed bed gasifier and then tar in the produced gas is reformed in a non-catalytic reformer, finally the production gas is used to generate electricity. In this system, the gasifying agents are high temperature air and steam supplied into the gasifier and the reformer. This paper reports on optimum gasification air ratio (defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion of biomass), reforming air ratio (defined as the ratio of the oxygen mole supplied in the reformer to the oxygen mole required for the complete combustion of biomass) and steam ratio (defined as the ratio of the steam mole supplied into the gasifier to the carbon mole in biomass supplied into the gasifier) for producing required gas supplied into a dual-fueled diesel engine. The results showed that, under optimum conditions, the higher heating value of the reformed gas was 3.9 MJ/m3N; the cold gas efficiency (defined as the ratio of HHV reformed gas × reformed gas flow rate to HHV biomass × biomass feed rate) of the gasification system was 66%, and the gross thermal efficiency of the overall system was 27%.  相似文献   

8.
Biomass and coal are important solid fuels for generation of hydrogen-rich syngas from steam gasification. In this work, experiments were performed in a bench-scale gasifier to investigate the effect of coal-to-biomass ratio and the reaction kinetics for gasification of chars of biomass, coal and coal–biomass blends. In the gasification of these chars, steam was used as the gasification agent, while nitrogen was used as a gas carrier. The gasification temperature was controlled at 850, 900 and 950 °C. Gas produced was analysed using a micro-GC from which carbon conversion rate was also determined. From the experiments, it is found that the coal and biomass chars have different gasification characteristics and the overall reaction rate decreases with an increase in the ratio of coal–to-biomass.The microstructure of the coal char and biomass char was examined using scanning electronic microscopy (SEM), and it was found that the biomass char is more amorphous, whereas the coal char has larger pore size. The former enhances the intrinsic reaction rate and the latter influences the intra particle mass transportation. The difference in mass transfer of the gasification agent into the char particles between the two fuels is dominant in the char gasification.  相似文献   

9.
Biomass containing water of 30-65 wt.% and rich in cellulose, such as various grounds of drinking materials and the lees of spirit and vinegar, is not suitable for biological digestion, and the thermal conversion approach has to be applied to its conversion into bioenergy. The authors have recently worked on converting such biomass into middle heating-value gas via dual fluidized bed gasification (DFBG) integrated with various process intensification technologies. This article is devoted to highlighting those technical ways, including the choice of the superior technical deployment for a DFBG system, the impregnation of Ca onto fuel in fuel drying, the integration of gas cleaning with fuel gasification via two-stage DFBG (T-DFBG), and the decoupling of fuel drying/pyrolysis and char gasification via the decoupled DFBG (D-DFBG). The attained results demonstrated that the superior deployment of bed combination for the DFBG should be a bubbling/turbulent fluidized bed gasifier integrated with a pneumatic riser combustor. In terms of improving efficiency of fuel conversion into combustible gas and suppressing tar generation during gasification, the impregnation of Ca onto fuel exhibited distinctively high upgrading effect, while both the T-DFBG and D-DFBG were also demonstrated to be effective to a certain degree.  相似文献   

10.
11.
BACKGROUND: This paper reports on process synthesis and economics of combined methanol and CHP (combined heat and power) energy production from crude biooil, waste glycerol produced in biodiesel factories and biomass wastes using integrated reactor design for hydrogen rich syngas. This new process consists of three process steps: (a) pyrolysis of organic waste material to produce biooil, char and pyrogas; (b) steam assisted hydrogasification of the crude glycerol wastes, biooil mixed with pyrogas for hydrogen rich gas; and (c) a low temperature methanol synthesis process. The H2‐rich gas remaining after methanol synthesis is recycled back to the pyrolysis reactor, the catalytic hydro‐gasification process and the heat recovery steam generator (HRSG). RESULTS: The breakeven price of the Hbiomethanol process yields positive net financial NPV and IRR above 600 USD per tonne. The total capital cost for a small‐scale methanol plant of capacity 2 tonne h?1 combined with a cogeneration plant of capacity 2 MWe power is estimated to be 170.5 million USD. CONCLUSION: Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventionally while the plant still maintains a high methanol yield. The integrated hydrogasification reactor and energy recovery design process minimizes heat loss and increases the process thermal efficiency. The Hbiomethanol process can convert any condensed carbonaceous material and liquid wastes, to produce methanol and CHP. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The steam gasification of solid biomass by means of the absorption enhanced reforming process (AER process) yields a high quality product gas with increased hydrogen content. The product gas can be used for a wide range of applications which covers the conventional combined heat and power production as well as the operation of fuel cells, the conversion into liquid fuels or the generation of synthetic natural gas and hydrogen. On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO2 absorption to enhance the formation of hydrogen. The reactive bed material (limestone) used in the dual fluidized bed system realizes the continuous CO2 removal by cyclic carbonation of CaO and calcination of CaCO3. Biomass gasification with in situ CO2 absorption has been substantially proven in pilot plant scale of 100 kW fuel input. The present paper outlines the basic principles of steam gasification combined with the AER process the investigations in reactive bed materials, and concentrates further on the first time application of the AER process on industrial scale. The first time application has been carried out within an experimental campaign at a combined heat and power plant of 8 MW fuel input. The results are outlined with regard to the process conditions and achieved product gas composition. Furthermore, the results are compared with standard steam gasification of biomass as well as with application of absorption enhanced reforming process at pilot plant scale.  相似文献   

13.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

14.
The quoted two-stage dual fluidized bed gasification (T-DFBG) devises the use of a two-stage fluidized bed (TFB) to replace the single-stage bubbling fluidized bed gasifier involved in the normally encountered dual fluidized bed gasification (N-DFBG) systems. By feeding fuel into the lower stage of the TFB, this lower stage functions as a fuel gasifier similar to that in the N-DFBG so that the upper stage of the TFB works to upgrade the produced gas in the lower stage and meanwhile to suppress the possible elutriation of fuel particles fed into the freeboard of the lower-stage bed. The heat carrier particles (HCPs) circulated from the char combustor enter first the upper stage of the TFB to facilitate the gas upgrading reactions occurring therein, and the particles are in turn forwarded into the lower stage to provide endothermic heat for fuel pyrolysis and gasification reactions. Consequently, with T-DFBG it is hopeful to increase gasification efficiency and decrease tar content in the produced gas. This anticipation was corroborated through gasifying dry coffee grounds in two 5.0kg/h experimental setups configured according to the principles of T-DFBG and N-DFBG, respectively. In comparison with the N-DFBG case, the test according to T-DFBG increased, the fuel C conversion and cold gas efficiency by about 7% and decreased tar content in the produced gas by up to 25% under similar reaction conditions. Test results demonstrated also that all these upgrading effects via adopting T-DFBG were more pronounced when a Ca-based additive was blended into the fuel.  相似文献   

15.
During fluidized bed biomass gasification, complex gas‐solid mixing patterns and numerous chemical and physical phenomena make identification of optimal operating conditions challenging. In this work, a parametric experimental campaign was carried out alongside the development of a coupled reactor network model which successfully integrates the individually validated sub‐models to predict steady‐state reactor performance metrics and outputs. The experiments utilized an integrated gasification system consisting of an externally‐heated, bench‐scale, 4‐in., 5 kWth, fluidized bed steam/air blown gasifier fed with woody biomass equipped with a molecular beam mass spectrometer to directly measure tar species. The operating temperature (750–850°C) and air/fuel equivalence ratio (ER = 0–0.157) were independently varied to isolate their effects. Elevating temperature is shown to improve the char gasification rate and reduce tar concentrations. Air strongly impacts the composition of tar, accelerating the conversion of lighter polycyclic‐aromatic hydrocarbons into soot precursors, while also improving the overall carbon conversion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1543–1565, 2017  相似文献   

16.
The purpose of the study presented in this paper was to find out the feasibility of integrating a 50 MW fuel cell system, fed by gas from a coal gasifier, with an existing network for distribution of heat and power. The work presented is the results of the technical evaluation of a 50 MW coal fired high-temperature fuel cell power plant. The overall system can be divided into four subsystems including: coal gasification, gas cleaning, power generation and heat recovery.

The final system, a entrained flow gasifier combined with standard low-temperature gas cleanup and SOFC, resulted in an overall electrical efficiency of about 47%, and an overall efficiency close to 85%.  相似文献   


17.
C Franco  F Pinto  I Gulyurtlu  I Cabrita 《Fuel》2003,82(7):835-842
Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700-900 °C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830 °C and a steam/biomass ratio of 0.6-0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained.  相似文献   

18.
生物质水蒸气气化制取富氢合成气及其应用的研究进展   总被引:1,自引:0,他引:1  
贾爽  应浩  孙云娟  孙宁  徐卫  许玉  宁思云 《化工进展》2018,37(2):497-504
生物质水蒸气气化是有效的热化学转化手段,可将原材料转化为富氢合成气,气体应用更加广泛,有替代化石能源制氢的潜在价值。不同的生物质资源气化和产氢能力存在差异,物料的选择对气化制取富氢合成气至关重要,而调整气化操作参数包括反应温度、水蒸气加入量、催化剂和吸收剂等可进一步优化合成气质量,提升氢气含量。本文首先综述了不同操作条件对生物质水蒸气气化制取富氢合成气的影响。其次,介绍了生物质炭气化制取富氢合成气的研究现状,炭气化可制得高品质的富氢合成气,但过程受动力学限制,需要加入催化剂以提升炭气化速率。文中还简述了以钾盐为催化剂时的催化机理,并展望了富氢合成气的应用,包括制备高纯氢应用于燃料电池和制备合成天然气。  相似文献   

19.
The paper deals with a high efficiency process for biomass gasification based on the concept of the internal circulating fluidized bed (ICFB). A modeling tool has been developed for the prediction of theoretical values for the main species in a syngas produced by ICFB gasification. A thermodynamic sub-model has been utilized and integrated with a simplified lumped model of the gasifier. The model predicts H2 concentration up to 61% on water free basis. The comparison with calculations for one stage gasification demonstrates ICFB process is preferable, no dilution with inert gas occurring. Among the studied variables, the steam/fuel ratio and the fuel moisture exert the largest influence on the hydrogen yield with percentage changes up to 15% in the explored range of the variables.  相似文献   

20.
An integrated process has been proposed for the production of ultrapure hydrogen from biomass gasification with air. The process consists of an air-blown bubbling fluidized bed gasifier, a steam reformer, and a water-gas-shift membrane reactor. A non-isothermal model has been developed to simulate the fluidized bed gasifier, and a one-dimensional model has also been developed to simulate the steam reformer. The simulation results are compared with the experimental data, and good agreement is obtained. Based on the simulation results, the thermodynamic analysis of the integrated process is carried out. The simulation and analysis provide a quantitative tool for gaining insight into the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号