首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
采用LCA方法对煤制天然气方案及其替代方案(俄罗斯进口管道天然气以及澳大利亚进口液化天然气)进行了评价,揭示了煤制天然气全生命周期各环节的环境效应。3种方案中,煤制天然气的CO2等环境排放最高。煤制天然气对原材料价格的承受能力低下,随着褐煤价格的上涨,煤制天然气项目的经济性将受到较大的挑战。  相似文献   

2.
In this paper, the real time, dynamic phenomena of the three-dimensional horizontal gas and gas/solid mixture jetting in a 0.3 m (12 in) bubbling gas–solid fluidized bed are reported. The instantaneous properties of the shape of the jets and volumetric solids holdup are qualified and quantified using the three-dimensional electrical capacitance volume tomography (ECVT) recently developed in the authors’ group. It is found that the horizontal gas jet is almost symmetric along the horizontal axis during its penetration. As the jet width expands, the total volume of the gas jet increases. A mechanistic model is also developed to account for the experimental results obtained in this study. Comparison of jet penetration length and width between the model prediction and ECVT experiment shows that both the maximum penetration length and the maximum width of the horizontal gas jet increase with the superficial gas velocity. When the horizontal gas jet coalesces with a bubble rising from the bottom distributor, it loses its symmetric shape and can easily penetrate into the bed. For the horizontal gas/solid mixture jet penetration in the bed, the tail of the jet at the nozzle shrinks and the jet loses its jet shape immediately when the jet reaches its maximum penetration length, which are different from the characteristics exhibited by the gas jet. The solids holdup in the core region of the gas/solid mixture jet is higher than that in the gas jet. The penetration length of the horizontal gas/solid mixture jet is also larger than that of the gas jet.  相似文献   

3.
A wire-mesh sensor has been employed to study air/water and air/silicone oil two-phase flow in a vertical pipe of 67 mm diameter and 6 m length. The sensor was operated with a conductivity-measuring electronics for air/water flow and a permittivity-measuring one for air/silicone oil flow. The experimental setup enabled a direct comparison of both two-phase flow types for the given pipe geometry and volumetric flow rates of the flow constituents. The data have been interrogated at a number of levels. The time series of cross-sectionally averaged void fraction was used to determine characteristics in amplitude and frequency space. In a more three-dimensional examination, radial gas volume fraction profiles and bubble size distributions were processed from the wire-mesh sensor data and compared for both flow types. Information from time series and bubble size distribution data was used to identify flow patterns for each of the flow rates studied.  相似文献   

4.
Particle image velocimetry (PIV) was used to measure local bubble size distributions (BSD), gas–liquid interfacial areas and gas holdups in an up-flow ejector, based on the water–air system with different liquid and gas flow rates under the presence/absence of the swirl body. The results show that the bubble flow patterns are different whether to add the swirl body into the nozzle, especially at low gas flow rate because the bubbles formed “bubble chain” in the ejector with swirl. The mean bubble sizes D32 of the two are both related to the pressure drop between import and export, gas ratio and liquid flow. The interfacial area and D32 are both mainly dependent on the local gas holdups. The mean bubble sizes in the absence of swirl body are smaller than that in the presence of swirl under different operating conditions. The gas holdups and interfacial area are larger with swirl than those without swirl. With the increase of the gas fraction, the differences of D32, at and eG become smaller.  相似文献   

5.
《Powder Technology》1989,57(1):27-38
Experimental data were obtained for the average gas convective and total heat transfer coefficients for a vertical tube immersed in an air-fluidized bed of narrowly as well as widely distributed particle size mixtures. The gas convective heat transfer coefficient was determined by measuring the rate of mass loss from a vertical naphthalene tube 0.0262 m in diameter and 0.1012 m in length and using a heat and mass transfer analogy. These data were obtained at a bed temperature of about 330 K and superficial velocity of 0.1 to 1.1 m/s. The total heat transfer coefficients were measured under identical conditions using an electrically heated vertical tube. The total heat transfer coefficient decreased with an increase in particle diameter from 0.237 to 1.35 mm. The addition of fines was found to increase the total heat transfer coefficient. The gas convective heat transfer coefficient increased with increase in particle size and fluidizing velocity. The dependence of the gas convective heat transfer coefficient on gas velocity was more pronounced for large particles. The addition of fines resulted in decrease in gas convective coefficient. The relative contribution of the gas convective component of heat transfer coefficient was found to increase with increase in particle diameter. Its dependency on fluidizing velocity was found to be more complex. The experimental data were compared with the existing heat transfer models and correlations.  相似文献   

6.
This review covers research at AO Vostochnyi Nauchno–Issledovatel’skii Uglekhimicheskii Institut (VUKhIN) over the past 50 years on the extraction of tar and naphthalene in the primary cooling of coke–oven gas and also on related topics such as the conditioning of coal tar and the cooling of ammonia liquor in surface heat exchangers. Some laboratory results that were not published during the author’s lifetime are presented here for the first time.  相似文献   

7.
The effect of flow direction on hydrodynamics and mixing in the upflow and downflowcirculating fluidized beds is discussed in details.Similar profiles of gas and solids velocities andsolids concentration are found in both risers and downers.When the flow is in the direction ofgravity(downer),the radial profiles of gas and particle velocity are more uniform than that inthe riser,the solids mixing is very small and the flow pattern approaches plug flow,while theflow is against gravity(riser),the solids backmixing significantly increase and the flow pattern isfar from plug flow.Among many of factors the flow direction has the largest influence onhydrodynamics and axial mixing of gas and solids.  相似文献   

8.
In industrial fluid cokers, bitumen is first mixed with steam in a premixer, and then fed to the atomization nozzle. The objective of this work was to evaluate the impact of both the premixer and the nozzle geometrical configuration on the quality of the liquid–solid contact resulting from injections of liquid into a gas–solid fluidized bed. To assess the quality of the liquid–solid contact a method based on electric conductance measurements of the bed material previously developed by the authors [9] was used. Liquid atomization efficiency in open air, spray geometry, and spray stability were also characterized to evaluate their effects on the nozzle spraying performance within the fluidized bed. This study indicated that spray stability is highly beneficial to the liquid–solid contact efficiency. In particular, fluid constrictions such as the series of converging and diverging sections within the nozzle have a stabilizing effect on the spray. Future optimization of the existing liquid-injection systems should consider alternative gas–liquid premixers and nozzle geometries to enhance the jet stability.  相似文献   

9.
The gas–solids flow in an industrial-scale semi-dry method desulphurization tower is simulated by the computational particle fluid dynamics (CPFD) approach. Compared with previous studies on desulphurization towers, this study focuses on analyzing particle distribution characteristics such as particle volume fraction, temperature distribution, and residence time. The simulation fully considered the particle–fluid, particle–particle, and particle–wall interactions in the desulphurization tower. Based on these considerations, the effects of flue gas inlet velocity and temperature on the gas–solid distribution characteristics of the desulphurization tower are simulated. An optimization scheme for adjusting the gas–solid flow in the desulphurization tower is proposed. The research results show that the error between the CPFD simulation data and experimental data is small and the changing trend is consistent. The particles in the bed of the desulphurization tower show a typical core–annulus flow. The distribution of gas and particles in the bed has a serious deviation with the increase of the flue gas inlet velocity and temperature. As the axial height of the desulphurization tower increases, the flue gas velocity, temperature, particle concentration, and water vapour distribution in the bed become more uniform. The relatively stable operating conditions for the gas–solid flow in the desulphurization tower is that the flue gas inlet velocity and temperature are 15 m/s and 393 K, respectively. Under these operating conditions, the pressure loss caused by the venturi accounted for 73.6% of the total pressure loss of the desulphurization tower. When the particle radius is between 0–150 μm, the particle size and the flue gas inlet velocity have the greatest influence on the particle residence time. Finally, the distribution of gas and particles before and after the adjustment of the desulphurization tower is compared, which showed that adjusting the bottom structure of the desulphurization tower could optimize the gas–solid flow.  相似文献   

10.
《Ceramics International》2016,42(16):18373-18379
This paper reports the performance of an yttria-stabilized zirconia fuel cell (YSZ) using five kinds of gas systems. The final target of this research is to establish the combined fuel cell systems which can produce a H2 fuel and circulate CO2 gas in the production process of electric power. A large electric power was measured in the H2–O2 gas system and the CO–O2 gas system at 1073 K. The formation process of O2− ions in the endothermic cathodic reaction (1/2O2+2e→O2−) controlled the cell performance in both the gas systems. The electric power of the H2–CO2 gas system, which allowed to change CO2 gas into a CO fuel (H2+CO2→H2O+CO) in the cathode, was 1/31–1/11 of the maximum electric power for the H2–O2 gas system. This result is related to the larger endothermic energy for the formation of O2− ions from CO2 molecules at the cathode (CO2+2e→CO+O2−) than from O2 molecules. The CO–H2O gas system and the H2–H2O gas system was expected to produce a H2 fuel in the cathode (CO+H2O→H2+CO2, H2+H2O→H2+H2O). Although relatively high OCV values (open circuit voltage) were measured in these gas systems, no electric power was measured. At this moment, it was difficult to apply H2O vapor as an oxidant to the cathodic reaction in a YSZ fuel cell.  相似文献   

11.
The effects of operating parameters (capillary and Reynolds numbers) and microchannel aspect ratio (α=w/h=[1;2.5;4]α=w/h=[1;2.5;4]) on the recirculation characteristics of the liquid slug in gas–liquid Taylor flow in microchannels have been investigated using 3-dimensional VOF simulations. The results show a decrease in the recirculation volume in the slug and an increase in recirculation time with increasing capillary number, which is in good agreement with previous results obtained in circular and square geometries (Thulasidas et al., 1997). In addition, increasing the aspect ratio of the channel leads to a slight decrease in recirculating volumes but also a significant increase in recirculation times.  相似文献   

12.
Using a previously developed experimental technique, the behavior of small methane and propane hydrate samples formed from water droplets between 0.25 and 2.5 mm in size has been studied in the pressure–temperature area between the ice–hydrate–gas equilibrium line and the supercooled water–hydrate–gas metastable equilibrium line, where ice is a stable phase. The unusual persistence of the hydrates within the area bounded by these lines and the isotherms at T=253 K for methane hydrate or at T=263 K for propane hydrates was observed. This behavior has not previously been reported. For example, in the experiment carried out at 1.9 MPa and 268 K, the methane hydrates existed in a metastable state (the equilibrium pressure at 268 K is 2.17 MPa) for 2 weeks, then immediately dissociated into liquid supercooled water and gas after the pressure was isothermally decreased slightly below the supercooled water–hydrate–gas metastable equilibrium pressure. It was found that dissociation of metastable hydrate into supercooled water and gas was reversible. The lateral hydrate film growth rates of metastable methane and propane hydrates on the surface of supercooled water at a pressure below the ice–hydrate–gas equilibrium pressure were measured. The temperature range within which supercooled water formed during hydrate dissociation can exist and a role of supercooled water in hydrate self-preservation is discussed.  相似文献   

13.
A short-contact cyclone reactor has been designed for the particular case of fluid catalytic cracking. The new type reactor mainly includes two parts: a reaction chamber and a separation chamber. So the cracking reactions and the separations between the products and catalysts could occur respectively and simultaneously. A three dimensional model was used to representing key parts of a laboratory cyclone reactor. The Eulerian–Eulerian computational fluid dynamics model with the kinetic theory of granular flow was adopted to simulate the gas–solid two-phase flow. The particle concentration distribution and pressure drop were measured by a PV-6A particles velocity measure instrument and a U-manometer, respectively. Simulated results show that in the reaction chamber solids can be transformed into a homogeneous dispersed flow, particles’ concentration becomes uniform gradually while catalysts flowing down, the concentration is a little higher near the wall because of boundary effect. After the gas–solid flowing into the separation chamber, the gas phase is separated with solids completely. The new reactor has a good contact and separation effect. Simulated results make a reasonable agreement with the experimental findings.  相似文献   

14.
《Chemical engineering science》2001,56(21-22):6455-6462
The real-time cross-sectional distributions of the gas holdups in gas–liquid and gas–liquid–solid systems are measured using electrical capacitance tomography. For the gas–liquid system, air as the gas phase and both Norpar 15 (paraffin) and Paratherm as the liquid phases are used. Polystyrene beads whose permittivity is similar to that of Paratherm are used as the solid phase in the gas–liquid–solid system. The three-phase system is essentially a dielectrically two-phase system enabling measurement of the gas holdup in the gas–liquid–solid system independent of the other two phases. A new reconstruction algorithm based on a modified Hopfield dynamic neural network optimization technique developed by the authors is used to reconstruct the tomographic data to obtain the cross-sectional distribution of the gas holdup. The real-time flow structure and bubbles flow behavior in the two- and three-phase systems are discussed along with the effects of the gas velocity and the solid particles.  相似文献   

15.
Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform m...  相似文献   

16.
Three gas–liquid dispersion states including flooding, loading, and complete dispersion are observed sequentially in a jet bubbling reactor with an increase of the liquid jet velocity at the nozzle outlet (uj). The gas–liquid dispersion states are identified through the slope (k) of the curve of fluctuation distribution index (FI) versus uj as follows: (a) under the flooding, k = 0; (b) under the loading, k > 0; (c) under the complete dispersion, k < 0. In particular, the uj at the transition points from flooding to loading and from loading to complete dispersion are referred to flooding jet velocity (ujf, the transition point between k = 0 and k > 0) and complete dispersion jet velocity (ujcd, the transition point from k > 0 to k < 0), respectively. The average relative deviations of the uj at the transition points obtained through the acoustic emission measurement and visual observation are less than 5%.  相似文献   

17.
Single-stage solid–gas reaction heat transformer system with the reactive salts of CaCl2 and MnCl2 was investigated. The system performances with gas valve control (closed protocol) were measured and compared with those without gas valve control (open protocol). The reasons of these differences were discussed. It was concluded that specific heating power (SHP), coefficient of performance (COP) and exergic COP (COPex) of the experimental set-up were improved with gas valve control. From the theoretical analysis, it was concluded that the improvement of system performances was mainly due to the difference of gas pressure in system operation, while not the multi-step reactions between CaCl2 and NH3. Further improvements of the performances of experimental set-up were also proposed. It was concluded that conducting heat recovery process would increase system COP and COPex, and converting to novel two-stage system with reactive salts of CaCl2, MnCl2 and FeCl2 would increase temperature lift ΔT.  相似文献   

18.
An electrical resistance tomography (ERT) linear probe was used to measure gas hold-up in a two-phase (gas–liquid) and three phase (gas–solid–liquid) stirred-tank system equipped with a Rushton turbine. The ERT linear probe was chosen rather than the more commonly used ring cage geometry to achieve higher resolution in the axial direction as well as its potential for use on manufacturing plant. Gas-phase distribution was measured as a function of flow regime by varying both impeller speed and gas flow rate. Global and local gas hold-up values were calculated using ERT data by applying Maxwell's equation for conduction through heterogeneous media. The results were compared with correlations, hard-field tomography data, and computational fluid dynamic simulations available in the literature, showing good agreement. This study thus demonstrates the capability of ERT using a linear probe to offer, besides qualitative tomographic images, reliable quantitative data regarding phase distribution in gas–liquid systems.  相似文献   

19.
Freestanding and crack-free titania–silica aerogels with high titanium content (i.e., Ti/Si = 1) were successfully prepared by adjusting the hydrolysis of the two alkoxide precursors to a comparable rate during the sol–gel processing. Two titania–silica aerogels were prepared by ethanol and CO2 supercritical drying methods. Well-dispersed, nanometer-sized anatase crystal domains (ca. 10 nm) were crystallized by high temperature, ethanol supercritical drying. The crystalline domains were solidly anchored to the aerogel network by Ti–O–Si bonds. Titania–silica aerogels prepared by CO2 supercritical drying method were devoid of TiO2 crystals. A molecular-level mixing was achieved and anatase TiO2 was only crystallized with difficulty by high temperature calcination (1073 K). Both aerogels were mesoporous and displayed similar open pore structure that is readily accessible to reactant molecules. However, only the titania–silica aerogel with anatase TiO2 prepared by ethanol supercritical drying was active for the gas phase, photocatalytic oxidation of volatile organic compounds (i.e., isopropanol and trichloroethylene). Catalysts prepared from Degussa P25 TiO2 displayed lower activity under similar reaction conditions.  相似文献   

20.
The transmission capacity of gas pipeline networks should be calculated and allocated to deal with the capacity booking with shippers. Technical capacities, which depend on the gas flow distribution at routes or interchange points, are calculated with a multiobjective optimization model and form a Pareto solution set in the entry/exit or point-to-point regime. Then, the commercial capacities, which can be directly applied in capacity booking, are calculated with single-objective optimization mod...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号