首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate   总被引:5,自引:0,他引:5  
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.  相似文献   

2.
The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds.A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems.  相似文献   

3.
4.
The oxidation of three model biodiesel fuels, namely methyl butanoate (C5H10O2, CAS No. 623-42-7), methyl crotonate (C5H8O2, CAS No. 623-43-8), and methyl decanoate (C11H22O2, CAS No. 110-42-9) was investigated in laminar premixed and non-premixed flames. The experiments were conducted in the counterflow configuration at atmospheric pressure, for a wide range of equivalence or inert-dilution ratios, and elevated reactant temperatures. Laminar flame speeds and local extinction strain rates were determined by measuring the flow velocities using digital particle image velocimetry. The experimental data were compared against those derived for flames of n-alkanes of similar carbon number, in order to assess the effects of saturation, the length of carbon chain, and the presence of the ester group. Several recent chemical kinetic models were tested against the experimental data, and major differences were identified and assessed. The accuracy of the Lennard–Jones potential parameters assigned to the methyl esters in the transport databases of the different models was evaluated and new values were estimated. Insight was provided into the high-temperature kinetic pathways of methyl esters in flame environments. Additionally, the reduced sooting propensity of methyl ester flames compared to n-alkane flames was investigated computationally.  相似文献   

5.
The aim of this work is to develop and discuss a lumped kinetic model to simulate the pyrolysis and combustion behavior of methyl decanoate. Validation of the lumped kinetic model of methyl decanoate in a very wide range of conditions, with temperature ranging from 500 to more than 2000 K, pressures up to 16 bar and equivalent ratios from lean to pyrolysis conditions, proved that, despite the drastic simplifications, the model can properly reproduce the experimental measurements in pyrolysis as well as in an oxidation environment, in both the low temperature regime and in flame conditions. This model is an extension of the lumped model of methyl butanoate developed and discussed in the first part of this work [1]. Thus, the lumped kinetic model of methyl butanoate and methyl decanoate is also quite simply applied to simulating the combustion behavior of intermediate methyl esters, by using the lever rule between the two reference components. The overall agreement with experimental measurements is very encouraging and lays the basis for the extension to the lumped kinetic scheme to soy and rapeseed biodiesel fuels.  相似文献   

6.
A shock tube study of methyl decanoate autoignition at elevated pressures   总被引:1,自引:0,他引:1  
A shock tube study of the autoignition of methyl decanoate, a candidate surrogate for biodiesel fuels containing large methyl esters, has been carried out. Ignition delay times were measured in reflected-shock-heated gases by monitoring electronically-excited OH chemiluminescence and pressure. Methyl decanoate/air mixtures were studied at equivalence ratios of 0.5, 1.0, and 1.5, at temperatures from 653 to 1336 K, and for pressures around 15–16 atm. The experimental results illustrate negative-temperature-coefficient behavior characteristic of alkanes, with ignition delay times very similar at high temperatures and somewhat longer at low temperatures than those for n-decane. Experimental results are compared to the kinetic modeling predictions of Herbinet et al. [Combust. Flame 154 (2008) 507–528] with remarkable agreement. Both reaction flux analysis and the comparison of experimental methyl decanoate and n-decane ignition delay times illustrate the importance of the long alkyl chain in controlling methyl decanoate overall reactivity and the subtle role the methyl ester group has on inhibiting low-temperature reactivity.  相似文献   

7.
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.  相似文献   

8.
Fuel properties of rapeseed oil and soybean oil methyl esters (e.g. density, cetane number and viscosity etc.) are similar to those of the diesel fuel. These methyl esters can be used as diesel engine fuel by mixing withy diesel fuel. In this study a comparison of diesel fuel, the rapeseed oil methyl ester and the soybean oil methyl ester was made from the engine performance and emissions point of view. The tests were carried out with a four-cylinder diesel engine for tree different injection pressures such as 250, 300 and 350 bar with each of these fuels. For the purpose of comparison, tests were also conducted at full load conditions with diesel fuel. As the result, the performance and emission values of rapeseed oil (R) and soybean oil (S) methyl esters were found to be nearly the same with those of diesel fuels (D) when injection pressure was increased to 300 bar.  相似文献   

9.
Autoignition of binary fuel blends of n-heptane and C7 esters, i.e., n-heptane/methyl hexanoate blend and n-heptane/methyl 3-hexenoate blend, was studied in a modified CFR engine at an equivalence ratio of 0.25 and an intake temperature of 155 °C. Heat release analyses showed that the n-heptane/methyl hexanoate blend exhibits stronger cool flame response than the n-heptane/methyl 3-hexenoate blend within the test range of this study, suggesting that methyl 3-hexenoate is less reactive than methyl hexanoate at low temperatures due to the presence of a double bond in the aliphatic chain. Based on quantitative product analyses, major oxidation pathways of methyl 3-hexenoate and of methyl hexanoate were identified. Consistent with the existing literature, at low to intermediate temperatures, methyl hexanoate was observed to undergo paraffinic low temperature oxidation pathways with the ester functional group remaining largely intact, while methyl 3-hexenoate exhibits olefinic oxidation characteristics. Moreover, it was observed that a key feature in the oxidation of methyl 3-hexenoate is the attack of radical species to the double bond in its aliphatic chain, resulting in the formation of unsaturated esters, an epoxy ester, and an aldehyde.  相似文献   

10.
采用正交试验和单因素试验的方法研究了氨基磺酸催化菜籽油及废油脂与甲醇的酯交换过程,考察了醇油物质的量比、催化剂用量、反应温度和反应时间对反应收率的影响。结果表明:菜籽油酯交换的最佳反应条件为醇油物质的量比6∶1,氨基磺酸用量为原料油质量的1.0%,反应温度60℃,反应时间20 min,此工艺条件下,脂肪酸甲酯的收率达到95.6%;废油脂酯交换的最佳反应条件为醇油物质的量比8∶1,氨基磺酸用量为原料油质量的1.0%、反应温度65℃,反应时间30 min,此工艺条件下,脂肪酸甲酯的收率达到87.5%。利用红外光谱表征了菜籽油和生物柴油的结构,气相色谱分析了生物柴油的组成。  相似文献   

11.
The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10−3 and 5.2 × 10−4) and under stoichiometric conditions.The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond.Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters.  相似文献   

12.
Pyrolysis and oxidation experiments have been conducted on two representative biodiesel surrogate components, methyl octanoate (C9:0) and methyl trans-2-octenoate (C9:1), using the UIC High-Pressure Shock Tube (HPST). The nominal experimental pressures ranged from 27 atm to 53 atm and temperatures varied from 900 to 1450 K with nominal reaction times of 1.65 ms. Dilute reagent mixtures of ∼100 ppm of each fuel were prepared in bulk argon and shock heated to study the stable intermediates. The experimental data have been used to develop and validate a kinetic model for the pyrolysis and oxidation of saturated and unsaturated C8 methyl esters. The developed model has also been coupled to an existing NO mechanism to predict prompt NO formation spanning the experimental temperature regime. It has been predicted that an increased amount of NO is formed from the unsaturated methyl ester, methyl trans-2-octenoate (C9:1) compared to the saturated methyl ester, methyl octanoate (C9:0) over the intermediate temperature range of 1050–1450 K.  相似文献   

13.
A detailed chemical kinetic reaction mechanism is developed for the five major components of soy biodiesel and rapeseed biodiesel fuels. These components, methyl stearate, methyl oleate, methyl linoleate, methyl linolenate, and methyl palmitate, are large methyl ester molecules, some with carboncarbon double bonds, and kinetic mechanisms for them as a family of fuels have not previously been available. Of particular importance in these mechanisms are models for alkylperoxy radical isomerization reactions in which a CC double bond is embedded in the transition state ring. The resulting kinetic model is validated through comparisons between predicted results and a relatively small experimental literature. The model is also used in simulations of biodiesel oxidation in jet-stirred reactor and intermediate shock tube ignition and oxidation conditions to demonstrate the capabilities and limitations of these mechanisms. Differences in combustion properties between the two biodiesel fuels, derived from soy and rapeseed oils, are traced to the differences in the relative amounts of the same five methyl ester components.  相似文献   

14.
Ignition delay time measurements are reported for two reference fatty-acid methyl ester biodiesel fuels, derived from methanol-based transesterification of soybean oil and animal fats, and four primary constituents of all methyl ester biodiesels: methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate. Experiments were carried out behind reflected shock waves for gaseous fuel/air mixtures at temperatures ranging from 900 to 1350 K and at pressures around 10 and 20 atm. Ignition delay times were determined by monitoring pressure and ultraviolet chemiluminescence from electronically-excited OH radicals. The results show similarity in ignition delay times for all methyl ester fuels considered, irrespective of the variations in organic structure, at the high-temperature conditions studied and also similarity in high-temperature ignition delay times for methyl esters and n-alkanes. Comparisons with recent kinetic model efforts are encouraging, showing deviations of at most a factor of two and in many cases significantly less.  相似文献   

15.
Gas-phase ignition delay times were measured behind reflected shock waves for a wide variety of low-vapor-pressure fuels. These gas-phase measurements, without the added convolution with evaporation times, were made possible by using an aerosol shock tube. The fuels studied include three large normal alkanes, n-decane, n-dodecane and n-hexadecane; one large methyl ester, methyl decanoate; and several diesel fuels, DF-2, with a range of cetane indices from 42 to 55. The reflected shock conditions of the experiments covered temperatures from 838 to 1381 K, pressures from 1.71 to 8.63 atm, oxygen concentrations from 1 to 21%, and equivalence ratios from 0.1 to 2. Ignition delay times were measured using sidewall pressure, IR laser absorption by fuel at 3.39 μm, and CH* and OH* emission. Measurements are compared to previous studies using heated shock tubes and current models. Model simulations show similar trends to the current measurement except in the case of n-dodecane/21% O2/argon experiments. At higher temperatures, e.g. 1250 K, the measured ignition delay times for these mixtures are significantly longer in lean mixtures than in rich mixtures; current models predict the opposite trend. As well, the current measurements show significantly shorter ignition delay times for rich mixtures than the model predictions.  相似文献   

16.
The experimental study of the oxidation of two blend surrogates for diesel and biodiesel fuels, n-decane/n-hexadecane and n-decane/methyl palmitate (74/26 mol/mol), has been performed in a jet-stirred reactor over a wide range of temperatures covering both low, and high-temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (hydrocarbon inlet mole fraction of 0.002) and at stoichiometric conditions.Numerous reaction products have been identified and quantified. At low and intermediate temperatures (less than 1000 K), the formation of oxygenated species such as cyclic ethers, aldehydes and ketones has been observed for n-decane, n-hexadecane, and methyl palmitate. At higher temperature, the formation of these species was not observed any more, and small amounts of unsaturated species (olefins and unsaturated methyl esters) have been detected.Results obtained with methyl palmitate and n-hexadecane have been compared in order to highlight similarities and differences between large n-alkanes and methyl esters.  相似文献   

17.
This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 23 full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions.  相似文献   

18.
Basic materials of biodiesels and molecular structure of different biodiesels were discussed with special focus on their oxidation stability and post-additization. Commercial biodiesels produced from rapeseed oil and used cooking oil were blended to diesel fuel in 5%, 7%, and 10% mass fraction. The samples were stored at ambient temperature for one year to simulate the effects of strategic storage and/or long stock turnover rate. Following the one year storage period the samples were treated with BHT antioxidant and/or succinic type detergent–dispersant additives in 300 mg kg−1, 600 mg kg−1 and 900 mg kg−1 concentrations. BHT was applied as antioxidant additive, while the detergent–dispersant additives were either newly developed additives (polyisobutylene succinic anhydride derivatives containing fatty acid methyl ester in their molecular structure) or commercial ones. Structure of the developed additives and their mechanism is described in detail. Rancimat and Seta TOST devices were applied to evaluate the effect of the additives on the oxidation stability of the samples. It was found that the decrease of oxidation stability during storage can be partially compensated with post-additization by suitable detergent–dispersant additives. Oxidation of biodiesels during Rancimat measurement was investigated with infrared spectroscopy. The results showed that during the thermal oxidation fatty acid methyl esters decompose to carbonyl, carboxyl and hydroxyl compounds, while cis-trans isomerization also occurs.  相似文献   

19.
In this study, the catalytic performance of commercial CaO modified by trimethylchlorosilane (TMCS) for transesterification of rapeseed oil and methanol to biodiesel production was investigated. It was found that the fatty acid methyl esters (FAME) yield of the modified CaO was greatly enhanced from 85.4% to 94.6%. The possible reason lies on promoting the absorption of grease to CaO surface. Good results of repeated experiments showed that the modified catalyst has the capacity of water resistance and can be reused for several runs without significant deactivation, which can be confirmed by the humidity test in the vapor-saturated atmosphere. Both the characterizations of the catalyst and the effects of various factors such as mass ratio of catalyst to oil, reaction temperature and molar ratio of methanol to oil were investigated.  相似文献   

20.
The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号