首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drying Technology》2013,31(9):1839-1866
Abstract

A two dimensional numerical model has been developed to simulate heat transfer in gas–solids flows through pipes, in which the gas phase is modelled as a continuum using the Computational Fluid Dynamics (CFD) approach and the solids phase is modelled by the Discrete Element Method (DEM). This allows interactions between gas, particles, and pipe wall to be accounted at the scale of individual particles and convective and conductive heat transfers to be calculated using local gas and solids parameters. The predicted changes to the flow structures and the various heat transfer mechanisms due to the presence of particles were analyzed and compared with other workers' findings. This study has quantitatively demonstrated the crucial effect of particle transverse motion on heat transfers due firstly to the thermal energy transport by rebounding particles and secondly to the modification of the fluid thermal boundary layer characteristics.  相似文献   

2.
A two dimensional numerical model has been developed to simulate heat transfer in gas-solids flows through pipes, in which the gas phase is modelled as a continuum using the Computational Fluid Dynamics (CFD) approach and the solids phase is modelled by the Discrete Element Method (DEM). This allows interactions between gas, particles, and pipe wall to be accounted at the scale of individual particles and convective and conductive heat transfers to be calculated using local gas and solids parameters. The predicted changes to the flow structures and the various heat transfer mechanisms due to the presence of particles were analyzed and compared with other workers' findings. This study has quantitatively demonstrated the crucial effect of particle transverse motion on heat transfers due firstly to the thermal energy transport by rebounding particles and secondly to the modification of the fluid thermal boundary layer characteristics.  相似文献   

3.
The emission of HCl from calcium chloride during the air–steam gasification of solid fuel in the filtration combustion mode was studied. The limiting amounts of HCl released into the gas phase under real conditions of a shaft kiln gasifier were estimated. It was shown that the most important factors responsible for the stability of CaCl2 are the humidity of an oxidant gas and the process temperature.  相似文献   

4.
石油焦煅烧回转窑综合传热过程数值模拟   总被引:3,自引:0,他引:3  
研究了石油焦煅烧回转窑内的物理和化学反应过程对回转窑内传热过程的影响,并在对回转窑内的物料输送过程、传质过程和传热过程具体分析的基础上,建立了石油焦煅烧回转窑的综合传热数学模型. 应用数值计算方法对传热数学模型进行计算求解,预测了窑内气体、物料和窑壁内外表面的轴向温度分布. 结果表明,窑内的高温区域主要集中在挥发分大量燃烧的区段上,三次风的注入会引起窑内气相温度的明显下降,但不会造成料床温度的明显变化;在物料与气体、窑内壁之间热交换过程中,物料与被覆盖的窑内壁表面之间的对流换热和气体与料床表面间的辐射换热为主要的传热机制. 计算预测的结果与测量数据在规律上和数值上都能较好地符合,从而为石油焦煅烧回转窑的优化设计和经济运行提供了指导和依据.  相似文献   

5.
Effect of operating pressure on the hydrodynamics of agglomerating gas–solid fluidised bed was investigated using a combination of discrete element method (DEM) for describing the movement of particles and computational fluid dynamic (CFD) for describing the flow of the gas phase. The inter‐particle cohesive force was calculated based on a time dependent model developed for solid bridging by the viscous flow. Motion of agglomerates was described by the multi‐sphere method. Fluidisation behaviour of an agglomerating bed was successfully simulated in terms of increasing the size of agglomerates. The results showed that increasing the operating pressure postpones de‐fluidisation of the bed. Since the DEM approach is a particle level simulation and study about particle–particle interactions is possible, a micro‐scale investigation in terms of cohesive force and repulsive force during agglomeration at elevated pressures was done. The micro‐scale results showed that although the number of contacts between particles was decreased by increasing operating pressure, stronger solid bridge formed between colliding particles at higher pressures. © 2012 Canadian Society for Chemical Engineering  相似文献   

6.
7.
Yoshikage Ohmukai  Isao Hasegawa  Kazuhiro Mae 《Fuel》2008,87(13-14):3105-3111
A shaft kiln is considered to be a promising pyrolysis device for the efficient decomposition of municipal wastes. In this device, the temperature distributions of the gas and solid phases can be separately controlled, thereby leading to considerably different profiles for both the phases. The temperature controllability in a shaft kiln helps us to obtain a suitable profile of the gas-phase temperature for the decomposition of tar that evolves from the solid phase. By leveraging this advantage of the shaft kiln, we performed further pyrolysis and steam reforming of the volatiles formed from the pyrolysis of biomass and several polymers using a two-stage reactor that was maintained at different temperatures. The amount of tar decreased with an increase in the temperature in the upper reactor in the absence of a catalyst. By using the experimental results, we developed a lumped kinetic model for secondary gas-phase reactions and performed a kinetic analysis of the reactions that proceeded in the upper reactor. It is confirmed that the simulation model is successful in reproducing the product distribution of the gas-phase reactions of volatiles from biomass and polymers.  相似文献   

8.
A prototype of biomass char production system with the potential of high charcoal/fixed carbon yield and low cycle time is developed in the current study. The prototype biomass char production system comprises of a solid biomass heat conversion unit, a carbonizer and a connecting pipe. The heat conversion unit is an updraft fixed bed gasifier with an embedded combustor fueled by solid biomass for generating high temperature flue gas. The carbonizer is a variation of Brazilian beehive charcoal kiln. The connecting pipe transports the hot and oxygen free flue gas from the gasifier to the carbonizer. The flue gas is radially distributed in the floor of the Brazilian beehive kiln through many small openings on the surface of a ring pipe.In the current study the syngas generated from the updraft fixed bed gasifier is fully burnt in the embedded combustor. This design results in very high temperature and virtually oxygen free flue gas from solid biomass. The hot and reductive flue gas is forced to circulate in the kiln to carbonize the biomass charge. Temperature distribution in the carbonizer is found to be much more uniform than any conventional charcoal kiln. Higher final carbonization temperature in the kiln is also realizable without the sacrifice of any charge in the current approach. All the solid biomass in the kiln is converted into high quality charcoal with very high fixed carbon percentage and solid biomass burnt to ash is barely discernable. The biomass char yield gradually increases by more than 15 percentage points. The carbonization time is effectively reduced to 4 h compared favorably with the conventional 160 h.  相似文献   

9.
A discrete modeling approach is introduced to investigate the influence of liquid phase distributions on damage and deformation of particle aggregates during convective drying. The approach is illustrated on a simple 3D aggregate structure, in which monosized spherical particles are arranged in a cubic packing and bonded together at their contacts; the mechanical behavior of this aggregate is simulated by discrete element method (DEM). Liquid phase distributions in the void space are obtained from drying simulations for a pore network. In a one‐way coupling approach, capillary forces are computed over time from the filling state of pores and applied as loads on each particle in DEM. A nonlinear bond model is used to compute interparticular forces. Simulations are conducted for various drying conditions and for aggregates with different mechanical properties. Microcracks induced by bond breakage are observed in stiff material, whereas soft material tends to shrink reversibly without damage. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
11.
The gas and particle motions in a bubbling fluidized bed both with and without chemical reactions are numerically simulated. The solid phase is modelled as Discrete Element Method (DEM) and the gas phase is modelled as 2-D Navier-Stokes equations for 2-phase flow with fluid turbulence calculated by large Eddy simulation (LES), in which the effect of particles on subgrid scale gas flow is taken into account. The gas/particle flow structure, the mean velocities and turbulent intensities can be predicted as a function of several operating parameters (particle size, bed temperature, and inlet gas velocity). The lower the inlet gas velocity, the higher the ratio of particle collision. The distributions of the particle anisotropic velocity show that the particles have no local equilibrium, and the distribution of gas kinetic energy corresponds to the distribution of gas-particle coupling moment in the fluidized bed. An intensive particle turbulent region exists near the wall, and the gas Reynolds stress is always much higher than the particle stress. The presence of the large reactive particles in the fluidized bed may affect significantly the gas and particle velocities and turbulent intensities. The effects of the bed temperature and inlet gas velocity on the gas particle flow structure, velocity, and turbulent intensity are also studied.  相似文献   

12.
13.
Flow behavior of gas and particles is predicted by a filtered two-fluid model by taking into the effect of particle clustering on the interphase momentum-transfer account. The filtered gas–solid two-fluid model is proposed on the basis of the kinetic theory of granular flow. The subgrid closures for the solid pressure and drag coefficient (Andrews et al., 2005) and the solid viscosity (Riber et al., 2009) are used in the filtered two-fluid model. The model predicts the heterogeneous particle flow structure, and the distributions of gas and particle velocities and turbulent intensities. Simulated solids concentration and mass fluxes are in agreement with experimental data. Predicted effective solid phase viscosity and pressure increase with the increase of model constant cg and cs. At the low concentration of particles, simulations indicate that the anisotropy is obvious in the riser. Simulations show the subgrid closures for viscosity of gas phase and solid phase led to a qualitative change in the simulation results.  相似文献   

14.
Gas–solid flow plays a dominant role in the multiphase flow in an ironmaking blast furnace (BF), and has been modelled by different approaches. In the continuum-based approach, the prediction of the solid flow pattern remains difficult due to the existence of the stagnant zone in the BF lower central part. This difficulty has recently been shown to be overcome by discrete particle simulation (DPS). In this work, the DPS is extended to couple with computational fluid dynamics (CFD) to investigate the gas–solid flow within a BF. The results demonstrate that the DPS–CFD approach can generate the stagnant zone without global assumptions or arbitrary treatments. It confirms that increasing gas flow rate can increase the size of the stagnant zone, and in particular changes the solid flow pattern in the furnace shaft. More importantly, microscopic information about BF gas–solid flow, such as flow and force structures that are extremely difficult to obtain in continuum-approach or experiments, can be analyzed to develop better understanding of the effect of gas phase, and the underlying gas–solid flow mechanisms.  相似文献   

15.
The characteristic times of the main intra particle phenomena of wood pyrolysis are discussed to develop a new model of biomass pyrolysis. The model accounts for a simplified multi-step chemical decomposition with the formation of tars at liquid phase inside the particle. The tars at liquid phase are then competitively converted into a secondary char and gases and evaporated following a Clausius–Clapeyron law. To our knowledge, a tar evaporation law had so far never been coupled with cellulose pyrolysis kinetics. The convective mass transport of all the volatile species through the porous particle is modelled by a Darcy's law. This model offers a first approach to simulate the tar (at liquid phase) life time and its intra-particle conversion. The Clausius–Clapeyron evaporation parameters are reviewed and modified if levoglucosan or cellobiosan are supposed as the main tar compounds at liquid phase. The effects of these parameters on cellulose pyrolysis mass loss rate are modelled and discussed. Mass transfer limitations can lead to a high intra-particle over-pressure and can control the life time of tar at liquid phase and the subsequent “secondary” char formation from the liquid tar conversion.  相似文献   

16.
A monolithic catalytic converter of automobile exhaust gas was modelled in order to assess the effects of oscillatory feeding on the performance of the reactor with respect to CO oxidation by O2. Simulations were performed with an oscillating feed composition of CO and O2. The influence of frequency, amplitude, phase angle and ratio of reactants in the feed on the time average CO conversion was investigated. An improvement relative to the steady state conversion of 10% maximum is obtained at temperatures below the light-off temperature, at frequencies below 0.1 Hz and an amplitude of 15%. The reverse effect is obtained from temperatures slightly above the light-off temperature upwards. These effects are strongest when CO and O2 oscillate in counterphase. The explanation for this effect is given in terms of strongly changing surface coverage during cycling of the feed concentrations.  相似文献   

17.
In this work, nonequilibrium thermodynamics and phase field theory (PFT) has been applied to study the kinetics of phase transitions associated with CO2 injection into systems containing CH4 hydrate, free CH4 gas, and varying amounts of liquid water. The CH4 hydrate was converted into either pure CO2 or mixed CO2?CH4 hydrate to investigate the impact of two primary mechanisms governing the relevant phase transitions: solid‐state mass transport through hydrate and heat transfer away from the newly formed CO2 hydrate. Experimentally proven dependence of kinetic conversion rate on the amount of available free pore water was investigated and successfully reproduced in our model systems. It was found that rate of conversion was directly proportional to the amount of liquid water initially surrounding the hydrate. When all of the liquid has been converted into either CO2 or mixed CO2?CH4 hydrate, a much slower solid‐state mass transport becomes the dominant mechanism. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3944–3957, 2015  相似文献   

18.
19.
A heterogeneous model for the fast fluidized bed reactor which carries out a gas-solid non catalytic reaction is presented. The hydrodynamics of the fast fluidized bed is characterized by the model of Kwauk et al. (1985) which assumes the existence of two phases; a dense phase and a dilute pneumatic transport phase. For a given solid flowrate, the length of the reactor occupied by each phase depends on gas velocity, particle diameter and density and average voidage within the reactor. The gas-solid reaction is assumed to follow the shrinking core model. The solids are assumed to be completely backmixed in the dense phase and move in plug How in the dilute pneumatic transport phase. The gas phase is assumed to be in plug flow in both phases

For given gas and solid flowrates, the transition from the dense phase flow to the fast fluidized bed (containing two regions) as functions of particle size and density is determined using the model of Kwauk et al. (1985). The numerical solution of the governing mass balance equations show that for given solid and gas flowrates, (and average voidage) the gas phase conversion shows an unusual behavior with respect to particle diameter and density. Such behavior is resulted from the effects of particle diameter and density on the reactor volume occupied by each phase and the effect of particle diameter on the apparent reaction rate. The numerical results show that a fast fluidized bed gives the best conversion at large particle density and for the particle diameter which results the fast fluidized bed to be operated near the pure dense phase flow.  相似文献   

20.
Computational fluid dynamics (CFD) is used to study the flow behaviour and conversion in a freely bubbling bed of porous cracking catalyst particles fluidised by a mixture of ethylene and hydrogen on the in‐house code FLOTRACS‐MP‐3D. The solid phase viscosity and pressure are modelled on the basis of kinetic theory of granular flows (KTGF). An effective solid density is calculated to account for the inherent porosity of particles. The cohesive inter‐particle forces are incorporated into the CFD model by using an empirical approach proposed in literature. Qualitatively, the CFD model captures the flow behaviour and heat transfer in the bed quite well. On the quantitative front, the variation of conversion with gas velocity is predicted fairly well with the deviation between the predicted and measured conversion remaining within 20%. © 2011 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号