首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Si3N4/SiC composite materials have been fabricated by reaction-sintering and postsintering steps. The green body containing Si metal and SiC particles was reaction-sintered at 1370°C in a flowing N2/H2 gas mixture. The initial reaction product was dominated by alpha-Si3N4. However, as the reaction processed there was a gradual increase in the proportion of β-Si3N4. The reaction-bonded composite consisting of alpha-Si3N4, β-Si3N4, and SiC was heat-treated again at 2000°C for 150 min under 7-MPa N2 gas pressure. The addition of SiC enhanced the reaction-sintering process and resulted in a fine microstructure, which in turn improved fracture strength to as high as 1220 MPa. The high value in flexural strength is attributed to the formation of uniformly elongated β-Si3N4 grains as well as small size of the grains (length = 2 μm, thickness = 0.5 μm). The reaction mechanism of the reaction sintering and the mechanical properties of the composite are discussed in terms of the development of microstructures.  相似文献   

2.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

3.
4.
The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si3N4 and a Si3N4/SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si3N4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si3N4 particles milled with oxide additives. Monolithic Si3N4 could be sintered to 94% of theoretical density (TD) at 1500°C with nitrate additives. The sintering temperature was about 100°C lower than the case with oxide additives. After pressureless sintering at 1750°C for 2 h in N2, the bulk density of a Si3N4/20 wt% SiC composite reached 95% TD with nitrate additives.  相似文献   

5.
6.
Ultrafine amorphous Si3N4 powders were synthesized from laser-heated gases and cold-pressed into pellets for sintering experiments. At temperatures >1300°C, the powders crystallized with a concurrent, linearly proportional decrease in surface area. These powders densified on a local scale without additives or pressure.  相似文献   

7.
8.
9.
The properties of Si3N4 compositions produced by nitriding slip-cast Si bodies containing up to 16% Si3N4 grog were determined. The introduction of grog consistently lowered the densities, the room- and high-temperature strengths, and the resistance to oxidation. The open structure of the grog-containing mixes favored low-temperature gas-phase reactions leading to α-Si3N4 formation. In higher-density compositions containing predominantly Si, gas-liquid-solid reactions at higher temperatures produced a relatively greater content of the β phase.  相似文献   

10.
Hot isostatically pressed silicon nitride was produced by densifying Si3N4 powder compacts and reaction-bonded Si3N4 (RBSN) parts with yttria as a sintering additive. The microstructure was analyzed using scanning electron microscopy, X-ray diffraction, and density measurements. The influence of the microstructure on fracture strength, creep, and oxidation behavior was investigated. It is assumed that the higher amount of oxygen in the Si3N4 starting powder compared with the RBSN starting material leads to an increased amount of liquid phase during densification. This results in grain growth and in a larger amount of grain boundary phase in the hot isostatically pressed material. Compared with the hot isostatically pressed RBSN samples therefore, strength decreases whereas the creep rate and the weight gain during oxidation increase.  相似文献   

11.
Two commercial Si3N4 powders were coated with sintering aids by coprecipitation. Lanthanum and yttrium nitrates were used as sintering aid precursors. Electrokinetic sonic amplitude measurements and X-ray photoemission spectroscopy analysis were used to investigate electrokinetic behavior and surface properties, respectively. Coprecipitation produced different effects on the composition of the coating layer depending on the actual features of the starting Si3N4 powders. The electrokinetic behavior of aqueous suspensions with coated powders depended strongly on the additives, their solubility, and the rate of oxidation of the coated layer. The coprecipitation conditions had to be carefully controlled to obtain reproducible composition and morphology of the coating layers. Treatments of the starting powder, pH, and washing volumes were optimized to tailor the coating layer and improve the coprecipitation yield.  相似文献   

12.
Weight loss which occurs while sintering composited Si3N4 powders requires the loss of one or more of the end-member constituents through a volatilization reaction. By plotting the direction of the compositional change on the appropriate equivalence phase diagram, the principal volatilization reaction can be determined. For a particular composition in the system Si-Y-N-O sintered at 1750°C, the principal volatilization reaction was Si3N4(s) +3SiO2(s)→6SiO(g) +2N2(g).  相似文献   

13.
The effect of rare-earth oxide additives on the densification of silicon nitride by pressureless sintering at 1600° to 1700°C and by gas pressure sintering under 10 MPa of N2 at 1800° to 2000°C was studied. When a single-component oxide, such as CeO2, Nd2O3, La2O3, Sm2O3, or Y2O3, was used as an additive, the sintering temperature required to reach approximate theoretical density became higher as the melting temperature of the oxide increased. When a mixed oxide additive, such as Y2O3–Ln2O3 (Ln=Ce, Nd, La, Sm), was used, higher densification was achieved below 2000°C because of a lower liquid formation temperature. The sinterability of silicon nitride ceramics with the addition of rare-earth oxides is discussed in relation to the additive compositions.  相似文献   

14.
15.
The densification behavior of Si3N4 containing MgO was studied in detail. It was concluded that MgO forms a liquid phase (most likely a magnesium silicate). This liquid wets and allows atomic transfer of Si3N4. Evidence of a second-phase material between the Si3N4 grains was obtained through etching studies. Transformation of α- to β-Si3N4 during hot-pressing is not necessary for densification.  相似文献   

16.
17.
We report here the study on tribological behavior of α-Sialon in aqueous medium. The results derived from a wide range of test conditions are briefly discussed. A reduction in friction coefficient from 0.7 to 0.03 and a decrease in wear rate by two orders of magnitude were achieved under low load (9.8 N) and high speed (>0.54 m/s) conditions. The tribological behavior of α-Sialon/Si3N4 ceramics was then compared with Si3N4/Si3N4 tribopairs.  相似文献   

18.
Si3N4/MoSi2 and Si3N4/WSi2 composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an At-base atmosphere was used before nitriding for the formation of MoSi2 and WSi2; the nitridation in a N2-base atmosphere was followed after presintering with the total stepwise cycle of 1350°C × 20 h +1400°C × 20 h +1450°C × 2 h. The final phases obtained in the two different composites were Si3N4 and MoSi2 or WSi2; no free elemental Si and Mo or W were detected by X-ray diffraction.  相似文献   

19.
The oxidation behaviors of monolithic Si3N4 and nanocomposite Si3N4-SiC with Yb2O3 as a sintering aid were investigated. The specimens were exposed to air at temperatures between 1200° and 1500°C for up to 200 h. Parabolic weight gains with respect to exposure time were observed for both specimens. The oxidation products formed on the surface also were similar, i.e., a mixture of crystalline Yb2Si2O7 and SiO2 (cristobalite). However, strength retention after oxidation was much higher for the nanocomposite Si3N4-SiC compared to the monolithic Si3N4. The SiC particles of the nanocomposite at the grain boundary were effective in suppressing the migration of Yb3+ ions from the bulk grain-boundary region to the surface during the oxidation process. As a result, depletion of yttribium ions, which led to the formation of a damaged zone beneath the oxide layer, was prevented.  相似文献   

20.
Using intermediate, liquid-forming compositions in the (Y,La)2O3-AlN system as additives, fully dense Si3N4 ceramics with high strength at high temperature have been obtained by pressureless sintering. The ceramics contain rod-shaped β-Si3N4 with M' or K' solid solutions as grain-boundary phases. The strength of these ceramics is 1150 MPa at 1200°C, and the room-temperature toughness is maintained at }7 MPa·m1/2. Phase relations that are pertinent to the new additive compositions are delineated to rationalize their beneficial effects on sinterability and mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号