首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
激光重熔纳米Al2O3-13%TiO2陶瓷涂层组织及性能   总被引:2,自引:0,他引:2  
为了进一步提高等离子喷涂纳米Al2O3-13%TiO2(质量分数, 下同)复合陶瓷涂层的性能,在γ-TiAl基体材料表面采用激光重熔工艺对涂层进行处理,研究了激光重熔对涂层微观组织和性能的影响.用扫描电镜(SEM)和显微硬度计分析了涂层形貌、微观结构和显微硬度,同时对涂层的磨损特性进行了考察.结果表明,等离子喷涂纳米陶瓷涂层由纳米颗粒完全熔化区和部分熔化区两部分组成,仍然具有等离子喷涂态的典型层状结构.经过激光重熔后,形成了致密细小的等轴晶重熔区、烧结区和残余等离子喷涂区,由于激光快速加热和快速冷却加工特点,在重熔区仍保留了部分来源于原等离子喷涂部分熔化区的残留纳米粒子.与常规等离子喷涂陶瓷涂层相比,纳米结构涂层可在一定程度上提高其硬度和耐磨性,经过激光重熔后其硬度和耐磨性进一步提高.  相似文献   

2.
材料结构与制备工艺对热障涂层显微组织的影响   总被引:3,自引:2,他引:1  
以常规和纳米团聚体ZrO2-7%Y2O3陶瓷粉末为原料,采用等离子喷涂和等离子喷涂+激光重熔复合工艺在TiAl合金表面制备了常规和纳米结构热障涂层。用扫描电镜(SEM)分析了粉末结构及制备工艺对涂层显微组织的影响。结果表明:用常规等离子喷涂法制备的陶瓷涂层为典型的层状堆积特征;而用等离子喷涂法制备的纳米结构涂层则由纳米颗粒完全熔化区和部分熔化区组成,呈两相结构。由于受到激光功率、能量密度、激光作用区温度场分布、陶瓷导热系数和涂层厚度等因素的综合影响,经激光重熔后,涂层呈现出明显的分层结构特征:上部为致密的柱状晶重熔区,下部为残余等离子喷涂区。由于激光重熔纳米结构涂层重熔区中残余纳米粒子的增韧作用,其晶界强度较高,从而导致断口有相当数量的穿晶断裂,而激光重熔常规涂层重熔区的断口基本是沿晶断裂。  相似文献   

3.
采用多种方法制备不同类型的Al2O3-13%TiO2热障涂层,即等离子喷涂常规涂层、纳米结构涂层及激光熔覆纳米结构涂层.在分析三类涂层微观组织的基础上,对其隔热性能进行了比较.结果表明,即等离子喷涂常规陶瓷涂层呈典型的层状堆积特征,纳米结构涂层都为特殊的两相结构,其中部分熔化区由类似的残留纳米粒子组成,等离子喷涂纳米结构涂层的完全熔化区为片层状结构,而相应的激光熔覆涂层的完全熔化区则为细小等轴晶.在相同条件下,等离子喷涂纳米结构热障涂层具有最好的隔热性能,而激光熔覆纳米结构涂层的隔热性能要好于等离子喷涂常规涂层.  相似文献   

4.
采用悬浮液等离子喷涂(SPS)和常规等离子喷涂(CPS)2种工艺制备纳米结构ZrO2/Y2O3涂层。利用XRD和SEM分析涂层的物相和微观组织,同时使用韦伯分布函数对涂层的显微硬度进行了统计分析。研究结果表明:在试验条件下,SPS制备的纳米结构ZrO2/Y2O3涂层为粒状结构,涂层致密且没有观察到显微裂纹。单个层片直径在0.3~4μm之间,平均晶粒尺寸51.8nm。CPS制备的纳米结构ZrO2/Y2O3涂层由部分熔化区和全熔区组成,部分熔化区保持纳米结构。2种方法制备的涂层物相均为亚稳四方相。CPS纳米结构涂层的显微硬度韦伯图呈双态分布,其中全熔区显微硬度较高,离散性大,而部分熔化区显微硬度低,离散性较小。SPS涂层显微硬度离散性比CPS全熔区小,表明SPS涂层组织更为均匀。  相似文献   

5.
以常规和纳米团聚体Al2O3-13TiO2(ω/%,下同)复合陶瓷粉末为原料,采用等离子喷涂工艺在TiAl合金表面制备常规和纳米结构陶瓷涂层.用扫描电镜(SEM)和X射线衍射(XRD)仪分析粉末和涂层形貌、微观结构及相组成,同时对纳米结构涂层的微观组织形成机制进行了讨论.结果表明:常规复合陶瓷涂层呈典型的等离子喷涂层状堆积特征;纳米结构复合陶瓷涂层由部分熔化区以及与常规等离子喷涂类似的片层状完全熔化区组成.根据组织结构的不同,部分熔化区又分为亚微米A12O3粒子镶嵌在TiO2基质相的三维网状或骨骼状结构的液相烧结区和经过一定长大但仍保持在纳米尺度的残留纳米粒子的固相烧结区,不同的部分熔化组织源于复合陶瓷粉末中A12O3与TiO2之间的熔点差异.由于等离子喷涂过程中涂层沉积时的快速凝固作用,不管是常规还是纳米涂层都以亚稳相γ-A12O3为主.  相似文献   

6.
树脂基复合材料用陶瓷涂层防护性能分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用等离子喷涂铝粉作为打底材料在碳纤维增强聚酰亚胺复合材料(PMC)基体上制备了Al2O3和ZrO2轻质陶瓷防护涂层,测试了涂层的剪切结合强度、耐热循环性能、抗冲蚀性能、隔热性能。结果表明,等离子喷涂铝粉作打底层的涂层系统,性能优于电弧喷铝或电弧喷锌作打底层的涂层系统。带有Al2O3涂层的试样失重不到基体材料失重的1/3,Al2O3和ZrO2陶瓷涂层都可以为聚酰亚胺复合材料基体提供有效的冲蚀防护。Al2O3和ZrO2陶瓷涂层都可以为聚酰亚胺复合材料基体提供有效的隔热防护,ZrO2涂层隔热性能优于Al2O3涂层。  相似文献   

7.
采用等离子喷涂方法制备了掺杂纳米Al2O3的ZrO2纳米陶瓷复合涂层(NCC)。并参照ZrO2传统涂层(MCC),探究了涂层显微硬度与微观组织结构的关系。试验数据显示,纳米复合陶瓷涂层表面与断面的平均显微硬度值均明显高于传统涂层;两者的Weibull分布均呈各向异性和分散性,但纳米复合陶瓷材料的分布较集中。通过TEM分析进一步表明,纳米复合涂层组织的明显细化、纳米Al2O3颗粒在ZrO2涂层中的弥散分布、微裂纹(微孔)韧化、晶内/晶间强化是NCC具有优异的力学性能的主要原因。  相似文献   

8.
研究工艺参数对等离子喷涂纳米结构ZrO2陶瓷涂层微观组织和力学性能的影响,采用三因素三水平正交试验法对喷涂电压、电流和主气流速三个主要参数进行了优化设计.采用定量金相分析法分析了涂层未熔化区域的大小,并测定了涂层的结合强度、裂纹扩展抗力和磨损性能.结果表明,制备纳米结构ZrO2陶瓷涂层的最佳工艺参数为电流540A,电流63V,主气流量45 L/min.  相似文献   

9.
采用等离子喷涂技术制备了不同成分的Al2O3/TiO2纳米陶瓷复合涂层,并利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和摩擦磨损试验机等分析测试手段研究了纳米陶瓷复合涂层的微观结构与性能.结果表明:纳米陶瓷复合涂层中Al2O3以α-Al2O3和γ-Al2O3两相共存的形式存在,且γ-Al2O3的含量随喷涂功率的增加而增加,而涂层中的TiO2则以金红石型存在;其微结构为完全熔化区的片状微观组织和部分熔化区的纳米级颗粒共存的组织;等离子喷涂功率和TiO2含量对涂层的硬度和耐磨性能均有显著的影响.  相似文献   

10.
等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理   总被引:7,自引:0,他引:7  
以Al2O3-13%TiO2(质量分数)团聚体复合陶瓷粉末为材料,采用等离子喷涂工艺在TiAl合金表面制备纳米结构陶瓷涂层.用扫描电镜(SEM)和X射线衍射仪(XRD)分析粉末和涂层形貌、微观结构及相组成,讨论涂层的微观组织形成机理.结果表明:纳米结构复合陶瓷涂层由部分熔化区以及与常规等离子喷涂类似的片层状完全熔化区组成;根据组织结构的不同,部分熔化区又分为液相烧结区(亚微米Al2O3粒子镶嵌在TiO2基质相的三维网状或骨骼状结构)和固相烧结区(经过一定程度长大但仍保持在纳米尺度的残留纳米粒子);等离子喷涂使部分α-Al2O3以及全部θ-Al2O3转变为亚稳态γ-Al2O3;纳米结构复合陶瓷涂层中的完全熔化区、液相烧结区及固相烧结区分别由等离子喷涂过程中纳米团聚体粉末中温度高于Al2O3熔点、介于TiO2熔点到Al2O3熔点之间以及低于TiO2熔点区域沉积获得,纳米结构涂层中不同部分熔化组织源于复合陶瓷粉末中Al2O3与TiO2之间的熔点差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号