共查询到20条相似文献,搜索用时 4 毫秒
1.
Mining causality is essential to provide a diagnosis within multiple sentences or EDUs (Elementary Discourse Unit) This research aims at extracting the causality existing The research emphasizes the use of causality verbs because they make explicit in a certain way the consequent events of a cause, e.g., "Aphids suck the sap from rice leaves. Then leaves will shrink. Later, they will become yellow and dry.". A verb can also be the causal-verb link between cause and effect within EDU(s), e.g., "Aphids suck the sap from rice leaves causing leaves to be shrunk" ("causing" is equivalent, to a causal-verb link in Thai). The research confronts two main problems: identifying the interesting causality events from documents and identifying their boundaries. Then, we propose mining on verbs by using two different machine learning techniques, Naive Bayes classifier and Support Vector Machine. The resulted mining rules will be used for the identification and the causality extraction of the multiple EDUs from text. Our multiple EDUs extraction shows 0.88 precision with 0.75 recall from Naive Bayes classifier and 0.89 precision with 0.76 recall from Support Vector Machine. 相似文献
2.
Forestry work has long been weak in data integration; its initial state will inevitably affect the forestry project development and decision-quality. Knowledge Graph (KG) can provide better abilities to organize, manage, and understand forestry knowledge. Relation Extraction (RE) is a crucial task of KG construction and information retrieval. Previous researches on relation extraction have proved the performance of using the attention mechanism. However, these methods focused on the representation of the entire sentence and ignored the loss of information. The lack of analysis of words and syntactic features contributes to sentences, especially in Chinese relation extraction, resulting in poor performance. Based on the above observations, we proposed an end-to-end relation extraction method that used Bi-directional Gated Recurrent Unit (BiGRU) neural network and dual attention mechanism in forestry KG construction. The dual attention includes sentence-level and word-level, capturing relational semantic words and direction words. To enhance the performance, we used the pre-training model FastText to provide word vectors, and dynamically adjusted the word vectors according to the context. We used forestry entities and relationships to build forestry KG and used Neo4j to store forestry KG. Our method can achieve better results than previous public models in the SemEval-2010 Task 8 dataset. By training the model on forestry dataset, results showed that the accuracy and precision of FastText-BiGRU-Dual Attention exceeded 0.8, which outperformed the comparison methods, thus the experiment confirmed the validity and accuracy of our model. In the future, we plan to apply forestry KG to question and answer system and achieve a recommendations system for forestry knowledge. 相似文献
3.
谷歌知识图谱技术近年来引起了广泛关注,由于公开披露的技术资料较少,使人一时难以看清该技术的内涵和价值.从知识图谱的定义和技术架构出发,对构建知识图谱涉及的关键技术进行了自底向上的全面解析.1)对知识图谱的定义和内涵进行了说明,并给出了构建知识图谱的技术框架,按照输入的知识素材的抽象程度将其划分为3个层次:信息抽取层、知识融合层和知识加工层;2)分别对每个层次涉及的关键技术的研究现状进行分类说明,逐步揭示知识图谱技术的奥秘,及其与相关学科领域的关系;3)对知识图谱构建技术当前面临的重大挑战和关键问题进行了总结. 相似文献
4.
学科建设是高校发展的核心,随着高校学科建设的不断深入与强化,学科建设信息持续增加,且以离散的文件组织形式难以对学科建设成果进行高效的管理,不利于后续分析与评估工作的开展.针对此问题,对学科建设知识图谱的构建及相关应用进行了研究.首先通过BERT-BiLSTM-CRF模型对学科建设文本进行事件抽取,并使用爬虫进行相关知识的补充.然后选择属性图模型存储知识,完成学科建设知识图谱的初步构建.基于构建好的知识图谱,搭建了学科建设可视化系统,并引入最小斯坦纳树算法实现智能问答应用.最后,通过对学科建设事件抽取与智能问答方法进行实验分析,验证了本文所提出方法的有效性. 相似文献
5.
6.
7.
因果知识是一类十分常见的知识类型,也是领域知识库的重要组成部分。基于互联网信息资源自动提取因果相关知识,对社会计算系统的建模和智能系统的建造具有十分重要的意义。本文面向开源中文文本信息,研究建立并实现一种自动提取因果知识的方法,以有效支持网上知识工程和安全领域的因果情报自动获取与因果知识库的构建。 相似文献
8.
带有时序特征的知识图谱(KG)称为时序知识图谱,用来描述知识库中增量式的概念及其相互关系.知识随着时间推移而变化,将新增知识实时、准确地添加到时序知识图谱中,可以实时反映知识的演化更新.对此,给出时序知识图谱的定义,并基于TransH提出一种时序知识图谱的增量构建方法.为了将新增且相关的三元组准确地添加到当前知识图谱中... 相似文献
9.
知识图谱在医疗、金融、农业等领域得到快速发展与广泛应用,其可以高效整合海量数据的有效信息,为实现语义智能化搜索以及知识互联打下基础。随着深度学习的发展,传统基于规则和模板的知识图谱构建技术已经逐渐被深度学习所替代。梳理知识抽取、知识融合、知识推理3类知识图谱构建技术的发展历程,重点分析基于卷积神经网络、循环神经网络等深度学习的知识图谱构建方法,并归纳现有方法的优劣性与发展思路。此外,深度学习虽然在自然语言处理、计算机视觉等领域取得了较大成果,但自身存在依赖大规模样本、缺乏推理性与可解释性等缺陷,限制了其进一步发展。为此,对知识图谱应用于深度学习以改善深度学习自身缺陷的相关方法进行整理,分析深度学习的可解释性、指导性以及因果推理性,归纳知识图谱的优势以及发展的必要性。在此基础上,对知识图谱构建技术以及知识图谱应用于深度学习所面临的困难和挑战进行梳理和分析,并对该领域的发展前景加以展望。 相似文献
10.
11.
12.
Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Discrete DAG Cases 下载免费PDF全文
张勤 《计算机科学技术学报》2012,27(1):1-23
Developed from the dynamic causality diagram (DCD) model,a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented,which focuses on the co... 相似文献
13.
Marie-Francine Moens Caroline Uyttendaele Jos Dumortier 《Information & Communications Technology Law》2000,9(1):17-26
Presently, we are confronted with an enormous amount of legal documents, which are increasingly recorded in electronic format. There is a need to make the information in legal texts easily and automatically accessible. In this paper we argue that in the legal field, where we are confronted with specific text types, knowledge about discourse structures and the linguistic cues that signal them is very valuable to incorporate in information extraction systems and in text processing systems in general. We also demonstrate the need for adequate formalisms for representing discourse patterns. However, intertextual analysis of texts that describes and explains the properties of text types and genres is underdeveloped in the legal field. 相似文献
14.
为解决碳交易领域数据集成问题,提出一种碳交易领域知识图谱的构建方法。针对碳交易领域的半结构化和非结构化数据,分别采用自定义的Web数据包装器和结合BiLSTM-CRF模型与依存句法分析的方法进行三元组抽取。然后将获取的知识转化为关联数据,得到完整的碳交易领域知识图谱,再利用基于Jena的fuseki实现对知识图谱的语义查询。实验结果表明,该方法能够为碳交易领域快速有效地构建知识图谱,并可以从碳交易领域的海量数据中检索出有用信息。 相似文献
15.
16.
17.
18.
Knowledge about specific diseases is often evolving but is embedded in medical texts. We propose a technique that employs term proximity information to improve the extraction of the disease factors, which are concept terms related to specific diseases in the medical texts. The disease factors are a core knowledge base for many information systems for healthcare decision support and education. In two case studies on a broad range of diseases, the proposed technique significantly further enhances a good extraction technique to rank the diagnosis factors. 相似文献
19.
随着城市大脑建设进程的推进,城市中积累了大量的物联网(IoT)设备和数据,利用海量设备数据对问题进行分析和溯源,对于城市大脑建设具有重要意义。该文基于资源描述框架和智能物联网协议概念,提出一种以城市物联网本体为基础的城市大脑知识图谱建设方法,城市大脑知识图谱模型融合多源异构数据,覆盖城市基本要素,实现对城市要素的全面感知和深度认知。该文重点探究了城市事件本体中的事件抽取,设计了一种新颖的语言模型框架对事件类型和论元联合抽取,与单模型分析对比,该联合模型较单模型的事件类型和论元F1值分别提高0.4%和2.7%,在时间和模型复杂度上,较单模型级联也有更好效果。最后,该研究对知识图谱技术与人工智能、多传感器融合、GIS等新一代信息技术交叉融合方面进行了探究分析,为城市治理和服务应用场景提供理论依据。 相似文献
20.
信息物理融合系统(cyber-physical system, CPS)在社会生活中发挥越来越广泛的作用. CPS资源的按需编排建立在CPS资源的软件定义基础上,软件接口的定义则依赖对CPS资源能力的充分描述.目前, CPS领域内缺少一个能规范表示资源及其能力的知识库和构建该知识库的有效方法.面向CPS资源的文本描述,提出构建CPS资源能力知识图谱并设计一种自底向上的自动构建方法.给定资源,所提方法先从其代码和文档中提取资源能力的文本描述信息,并基于预定义的表示模式生成规范化表示的能力短语.然后,基于动宾结构的关键成分对能力短语进行划分、聚合与抽象,生成不同类型资源的能力层次化抽象描述.最后,构建资源能力知识图谱.面向Home Assistant平台,构建了包含32个资源类别、957个资源能力的知识图谱.图谱构建实验从不同维度对比分析了手工构建和所提方法自动构建的结果.实验表明,所提方法为CPS资源能力知识图谱的自动化构建提供可行途径,有助于减少人工构建工作量,补充CPS领域内资源服务与能力的描述,并提高图谱的知识完备性. 相似文献