首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M0.2Ca0.8TiO3 : Pr^3 (M = Mg^2 , Sr^2 , Ba^2 , Zn^2 ) long persistence red phosphors were prepared by solid state reaction. The influence of the partially replacing Ca^2 in CaTiO3 with Mg^2 , Sr^2 , Ba^2 , Zn^2 on the excitation spectra, the emission spectra and the long persistence properties were studied. The results suggest that certain quantity of Mg^2 , Sr^2 , Ba^2 , Zn^2 which partially replace Ca^2 can enhance the luminescent intensity and prolong the afterglow persistence of the samples. The intensity of Mg0.2Ca0.8TiO3: Pr^3 is above all of the samples. Take Mg0.2Ca0.8TiO3:Pr^3 as the basic sample, the influence of Pr^3 concentrations (C (Pr^3 )) on the long afterglow properties were also studied.The results suggest that when the C (Pr^3 ) is 0.10% (tool fraction) the intensity of the sample is the highest. The excitation spectra of all these samples show broad band spectra ranging from 300 - 500 nm peaking at about 342 nm. The emission spectra also exhibit a broad band peaking at 613 nm (CaTiO3: Pr^3 is 612 nm). XRD research indicates that the crystalline phases change due to the replacement of divalent metal ions. The research on the thermoluminescence spectra of Mg0.2Ca0.8TiO3:Pr^3 indicates that the peak is at 107.35℃ and the depth of the trap energy is about 0.852 eV.  相似文献   

2.
In order to improve the luminescence properties of CaTiO3:Pr3+, a series of CaTiO3:Pr3+, such as CaTi0.97Nb0.03O3:Pr3+, Ca0.8Zn0.2TiO3: Pr3+, Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ and B3+-doped Ca0.8Zn0.2Ti0.97Nb0.03O3: Pr3+ were prepared through conventional solid state reaction method. The results of the photoluminescence excitation and emission spectra showed that all the samples emitted red phosphorescence at 612 nm originating from 1D2 to 3H4 emission of Pr3+ under the 337 nm excitation. When examined by the X-ray diffraction (XRD), all the samples presented a predominant phase of CaTiO3 (JCPDS# 42-423) except Zn2+-doped samples which also revealed another phase of Zn2Ti3O8 (JCPDS# 73-579). The results of the afterglow decay curves showed that co-doping Zn2+ ions, Nb5+ ions or adding a small amount of B3+ into Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ were effective in improving the photoluminescence properties of CaTiO3:Pr3+ phosphor. Thermoluminescence results showed that the trap existing in all the samples was the same as in CaTiO3:Pr3+ and doping singly Nb5+ or Zn2+ hardly changed the trap depth but co-doping Nb5+ and Zn2+ could modify the trapping level from 0.63 to 1.26 eV distinctively. In addition, adding a certain amount of B3+ into CTO-PZN could also deepen the trap depth.  相似文献   

3.
Nb5+ doped Ca0.8Zn0.2TiO3:Pr3+ red long afterglow phosphors were synthesized by solid-state reaction methods. X-ray diffraction, photoluminescence spectroscopy and thermally stimulated spectrometry were used to investigate the effects of Nb5+ content on the crystal characteristics and luminescent properties of Ca0.8Zn0.2Ti1-xNbxO3:Pr3+ phosphors. The results showed that the addition of a small quantity of Nb5+ had negligible effect on the crystal characteristics of Ca0.8Zn0.2Ti1-xNbxO3:Pr3+, but it could change the trapping parameters (the depth of trap, frequency factors and the concentration of trapped charges at t=0) of Ca0.8Zn0.2Ti1-xNbxO3:Pr3+ phosphors, and then led to the enhance-ment of red fluorescence and phosphorescence at 612 nm originating from 1D2→3H4 transition of Pr3+. Both of the red fluorescence intensity and afterglow time reached the largest values in the sample of Ca0.8Zn0.2Ti1-xNbxO3:Pr3+ with x=0.05. The afterglow time of Ca0.8Zn0.2Ti0.95Nb0.05O3:Pr3+ phosphors lasted for over 24 min (≥1 mcd/m2) when the excited source was cut off.  相似文献   

4.
Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.  相似文献   

5.
The luminescent properties of Sr2.97MgSi2O8:Eu2+0.01 phosphors were investigated with different Ln3+0.02(Ln3+:Dy3+,Er3+,Ho3+) co-dopants. The co-dopants had no influence on both the structure of the lattice and the position of the emission peak. However, the afterglow properties of samples were enhanced with different co-dopants. The afterglow duration of the Dy3+ co-doped sample was longer than that of the others. Furthermore, the co-doping samples had stronger thermoluminescence (TL) intensity and therefore longer afterglow duration. At last, the self-reduction of Eu3+→Eu2+ was observed in an silicate compound of Sr3-xMgSi2O8:xEu phosphor in air condition. This is the first time to show a blue long afterglow phosphor synthesized avoiding reducing atmosphere.  相似文献   

6.
Nanophosphor with the nominal composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ (CZTOPN) was synthesized at relatively low temperature by the sol-gel method. Metal ions were dispersed by citric acid in ethylene glycol solvent and then react with Ti(OC4H9)4 to form sol and gel. The decomposition process of the precursor, and crystallization and particle size of CZTOPN were examined by thermal analysis (TG-DSC), powder X-ray diffraction (XRD), and scan election microscopy (SEM). Results of TG-DSC and XRD reveal that the composition of Ca0.8 Zn0.2 TiO3 : Pr3 + , Na^+ changes with the sintering temperature. SEM data indicate that the diameter of particles is under 50 nm even if the sintering temperature increases to 1000 ℃. In contrast to a solid state reaction, the excitation spectra of samples synthesized by the sol-gel method shift blue about 10 nm and the emission intensity at 617 nm increases significantly.  相似文献   

7.
New long phosphorescent phosphors Ba1-x CaxAl2O4:Eu^2 , Dy^3 with tunable color emission were prepared and studied. The emission spectra show that the tuning range of the color emission of the phosphors is between 498 and 440 nm, which is dependent on x, under the excitation of UV. The wavelength of the afterglow increases with the increasing of x until x equals 0.6. The XRD patterns show that the single phase limit in the phosphors is below x value of 0.4.The Thermolumineseence spectra were measured to investigate the traps created by the doping of Dy^3 .  相似文献   

8.
The long persistent phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02) were prepared by a high temperature solid state reaction. All samples showed a broad band emission peaking at ~510 nm, which could be ascribed to Eu2+ transition between 4f65d1 and 4f7 electron configurations. With the increase of substitution of Ho3+ ions for the Dy3+ ions in the as-prepared phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02), the initial intensity of the afterglow obviously decreased. From the thermoluminescence (TL) curves of the samples, we concluded that codoped Ho3+ ions led to a decline of the trap depth and redistribution of the trap. This may be responsible for the change of afterglow of Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02).  相似文献   

9.
Long afterglow photoluminescent materials Sr2MgSi2O7 dopeo With Eu^2 ,Dy^3 were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8h.  相似文献   

10.
The afterglow luminescent property and thermo-luminescence (TL) of CaGa2S4:Eu^2 , Ho^3 were systemateally investigated. The afterglow of Eu and Ho Co-doped CaGa2S4 shows a broadband emission at 552 nm, which is the same as that of Eu doped CaGa2S4 only. And the decay behavior of CaGa2S4 Eu^2 , Ho^3 was investigated, which shows that CaGa2S4: Eu^2 , Ho^3 is a phosphor with long after-glow, whereas the CaGazS4:Eu^2 is a phosphor with-out long afterglow. Comparison of TL curves and 3D-TL emission spectra of CaGa2S4:Eu^2 ,Ho^3 and Ca-C, a2S4:Eu^2 show that a new trap center is produced at about 80℃, which is the basic reason of CaGazS4:Eu^2 ,Ho^3 with long afterglow.  相似文献   

11.
Eu-doped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared by controlling crys-tallization of melt-quenched glass fabricated under a reductive atmosphere.In the oxyfluoride borosilicate glass ceramics,the mean crystal size of Ba2GdF7 nanocrystals was about 30 nm,which could be observed by X-ray diffraction(XRD) and transmission electron microscopy analysis.The photoluminescence spectra of the samples excited at 392 nm showed that,besides the characteristic sharp emissions of Eu3+ ions,a very intense broadband emission of Eu2+ ions centered at 450 nm appeared.The photoluminescence intensity of Eu3+ and Eu2+ ions in the glass ceramics was much stronger than that in the as-made precursor.The long decay lifetimes of Eu3+ and Eu2+ ions evidenced the partitions of Eu3+ and Eu2+ ions into the Ba2GdF7 nanocrystals.The energy transfer from Gd3+ ions to Eu3+ and Eu2+ ions was confirmed by the excita-tion and emission spectra.  相似文献   

12.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu2+,Dy3+ was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the luminescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+ and polypropylene. The range of its excitation wavelength was located between 250–450 nm; therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu2+ ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay characteristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu2+,Dy3+.  相似文献   

13.
The photoluminescence properties of BiTaO4∶Pr3+ and BiTaO4 at room temperature were studied, and the infrared transmission and diffusion reflection spectra of BiTaO4 were measured. The photoluminescence spectrum of BiTaO4 peaks at about 420, 440 and 465 nm. There has an obvious excitation band from 330 to 370 nm. The photoluminescence spectrum of BiTaO4∶Pr3+ consists of the characteristic emission of Pr3+, and its main peak is at 606 nm from 3P0→3H6 transition of Pr3+. Its excitation spectrum consists of the wide band with maximum at 325 nm, the wide band in the range of 375~430 nm, and the characteristic excitation of Pr3+. The bands at 325 nm and 375~430 nm may be from the absorption of the charge transfer transition of the tantalate group and defect energy levels in its forbidden band, respectively. There is energy transfer from host to Pr3+. Because both the host density and photoluminescence peak intensity of BiTaO4∶Pr3+ are superior to PbWO4, BiTaO4∶Pr3+ may be a potential heavy scintillator.  相似文献   

14.
The VUV-UV spectroscopic properties of Ce3+ in Ba2Mg(BO3)2,Ba2Ca(BO3)2 and Sr2Mg(BO3)2 were compared,and the relation between the energy of the 4f→5d transition of Ce3+ and the coordination environments of substituted alkaline earth ions was discussed.The chromaticity coordinates of Ce3+ activated X2Z(BO3)2(X=Ba,Sr;Z=Ca,Mg) phosphors were changeable from blue to whitish and further to green range by varying the doping concentration of Ce3+ or the types of substituted alkaline earth ions upon 172 nm excitation.  相似文献   

15.
A-site substituted La0.8A0.2TiO3.5–δ(A=Ba, Sr, Ca) nano perovskites were prepared by sol-gel method and characterized using thermogravimetry/differential thermal analysis(TGA/DTA), X-ray diffraction(XRD), ultraviolet-visible(UV-Vis) spectroscopy and transmission electron microscopy(TEM). XRD analysis showed that the La0.8A0.2TiO3.5–δ(A=Ba, Sr, Ca) nano perovskites derived after calcination at 800 oC were in single phase with orthorhombic structure. The particle size of all nano perovskites was found to be ~20 nm. The synthesized nano perovskites were tested for the photocatalytic decomposition of an azo dye, Congo red. The sequential behavior of La0.8A0.2TiO3.5–δ(A=Ba, Sr, Ca) nanoperovskites for photocatalytic decomposition of congo red in aqueous solution by visible light at room temperature was studied at various time intervals and the efficiency of degradation of the nanoperovskites was compared. Among all the A-site substituted La0.8A0.2TiO3.5–δ(A=Ba, Sr, Ca) nano perovskites, Ba substituted compound showed the highest dye degradation.  相似文献   

16.
The study on the effects of SrO/Al2O3molar ratio on the crystalline phases and photoluminescence characteistics of strontium aluminate phosphors co-activated with Eu^2 andDy^3 were conductde by X-ray powder diffractometry ,fluorescence spectrometer and photometer.The strontium aluminate luminescent materials with different Sro/Al2O3molar ratio emit the visible lights with different color tone after removal of excitation.The peak wavelengths of the emission spectra drift in the direction of short wave,the quantity of Sr4A114O25crystalline phase molar ratio is near 1,the photoluminescence materials have high luminescent intensity,and when it is near0.75,they have long afterglow time.However,when SrO/Al2O3molar ratio is more than1,the luminescent materials appear strong alkaline in water solution;when SrO/Al2O3molar ratio is much less than 0.75,the samples need a higher temperature to be sintered.  相似文献   

17.
The luminous polypropylene fiber based on long afterglow luminescent material Sr2MgSi2O7:Eu^2+,Dy^3+was prepared by melt-spinning process. Micro-morphology, phase composition, crystal structure, spectral features and afterglow properties of the lu-minescent fiber were tested and analyzed. The results indicated that the fiber had independent superposition phase features of both Sr2MgSi2O7:Eu2+,Dy3+and polypropylene. The range of its excitation wavelength was located between 250-450 nm;therefore, the luminescent fiber could be excited by ultraviolet or visible light. It could emit blue light of 460 nm wavelength after excitation, which was caused by the 5d-4f transition of Eu^2+ions within the host lattice. The initial luminescent intensity was more than 0.8 cd/m^2, and afterglow life lasted 7 h. The afterglow decay was composed of rapid-decaying and slow-decaying processes, and the decay charac-teristics depended on the depth and concentration of trap level in the Sr2MgSi2O7:Eu^2+,Dy^3+.  相似文献   

18.
Y1.94-xMgxO2S:0.06Ti (0≤x≤0.10) phosphors with long afterglow were synthesized by solid state reaction route. The photoluminescence spectra, decay curves, thermoluminescent spectra and chromaticity coordinate curves were investigated. The results show that the luminescence intensity of Y1.94-xMgxO2S:0.06Ti (0≤x≤0.10) phosphors decrease gradually with increasing Mg2 ion content, and the shape of luminescence spectra and chromaticity coordinate change as well. Furthermore, two thermoluminescent peaks in single Ti-doped Y2O2S sample are found at 91.8 and 221.5 ℃, respectively. Nevertheless, significant different spectra were found for the Mg, Ti co-doped Y2O2S samples that three thermoluminescence peaks appear at 52.3, 141.7 and 226.8 ℃, respectively. These results indicate that the co-doped Mg ion changes the inherent trap depth of single Ti-doped Y2O2S:Ti phosphor, and induces simultaneously a new trap level in the Y1.94-xMgxO2S:0.06Ti phosphor. Based on the analysis of thermoluminescent spectra, photoluminescent spectra, decay curve and crystal structure defect, it was proposed that the varied structure defect and introduced new trap level by the doped Mg2 ions should be responsible for reducing luminescence intensity and varying color in the Y1.94-xMgxO2S:0.06Ti phosphor.  相似文献   

19.
Rare earth strontium aluminate luminous fiber is a novel functional fiber. In order to investigate the influence of Al/Sr ratio on luminescence properties of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers, several kinds of rare earth strontium aluminate luminous fibers were prepared by using rare-earth strontium aluminate as the rare-earth luminescent material and fiber-forming polymers such as polymer polyethylene terephthalate(PET) as a matrix and combining them with functional additives. X-ray diffraction(XRD), fluorescence spectrophotometer, and afterglow brightness tester as well as microcomputer thermo-luminescence dosimeters were used to characterize the resulting samples. Results from XRD demonstrated that the phase of xSrO·yAl2O3:Eu2+,Dy3+ luminous fibers were different from one another as the Al/Sr ratio changed. Emission spectra of the samples with different Al/Sr ratios showed that emission intensity increased with the decrease of A1/Sr ratio at first then increased when it was over 2/1. From afterglow decay results, it could be found that Sr-rich sample showed lower luminance and shorter persistent time.  相似文献   

20.
The long afterglow phosphor CaAl2Si2O8:Eu^2+ , Dy^3+ was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 %, which is 300 % lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号