共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
磨料水射流(AWJ)是高速水与磨料混合对材料进行加工的一种新型冷态高能切割技术,有着广阔的应用前景。但因其流态的特性,使得切割质量存在一些缺陷。为了提高工件表面质量和生产效率,在优化选择切割工艺参数组合的基础上,获得大量实验数据,试图建立能够精确预测切割质量的网络模型。通过程序对模型拓扑结构的改进,使得模型预测的切割质量更准确,很好地满足加工需要。 相似文献
3.
磨料水射流切割技术及其应用 总被引:4,自引:0,他引:4
阐述了磨料水射流的切割原理及低压磨料水射流切割机的工作原理和主要构造。并详细论述了低压磨料水射流切害虫机具有结构简单、操作方便、切缝质量好、切割效率高,并能对复杂图形实现智能化切守旧等优点,它是切割玻璃、陶瓷、大理石及花岗石等难切割材料的理想设备。 相似文献
4.
采用正交试验的方法,通过对摆振磨料水射流切落煤岩的试验及结果的分析,初步探索了摆振磨料水射流切落煤岩的特点,验证了摆振磨料水射流的可行性及其高效、低耗的切落特点,为摆振磨料水射流的实际应用提供了理论依据. 相似文献
5.
6.
7.
8.
9.
工艺参数对磨料水射流加工性能的影响 总被引:4,自引:2,他引:4
影响高压磨料水射流加工效果的主要因素是水压力、磨料参数、喷嘴的横向移动速度和喷嘴悬高等。采用新的工艺可以有效提高加工效率和加工质量,这些新工艺主要包括:多次切割、倾角切割和喷嘴往复摆动切割。 相似文献
10.
11.
12.
13.
磨料水射流对金属材料去除力和去除模型的研究 总被引:1,自引:0,他引:1
磨料水射流抛光技术作为一种新型技术,广泛应用于表面抛光加工作业中,利用含有细小磨料粒子的抛光液在高压作用下,与工件表面发生冲击、冲蚀而去除材料,以达到抛光目的。采用单颗粒磨料粒子使材料产生塑性变形模型来研究磨料水射流对金属材料的去除力,通过对纯水射流冲击材料的作用力和射流中磨料射流对材料的作用力以及接触应力的理论推导,得出磨料射流中轴线上磨料颗粒去除金属材料最大打击力和最大剪应力以及最大拉应力;通过建立伯努利方程,得到射流压力与金属材料的剪切力和拉应力的直接关系,为工程上磨料水射流抛光喷嘴设计和泵压选择提供了理论参考依据。 相似文献
14.
磨料水射流切割工艺参数的实验研究 总被引:12,自引:0,他引:12
磨料水射流切割中影响切割深度的因素很多,各工艺参数的选择和合理搭配对切割结果有很大影响,并且难以用精确的数学模型来描述.以磨料水射流切割混凝土为例,考察了射流压力、进给速度、靶距、磨料流量、磨料粒径和材料性能等工艺参数对最大切割深度的影响.结果表明:(1)切割深度与射流压力呈线性增长关系;(2)在一定范围内切割深度随磨料流量增加而增加,但当磨料流量达到一定值后,切割深度随流量增加反而下降;(3)切割深度随磨料粒径的增加呈先增加后减小的规律,存在一极值点;(4)切割深度随切割速度的增加呈指数衰减;(5)存在一最佳靶距,超过这个界限值时,随着靶距的增大,切割深度急剧减小;(6)混凝土试件抗压强度的抗压强度越大,切割深度越小. 相似文献
15.
16.
17.
A. A. El-Domiaty Dr A. A. Abdel-Rahman 《The International Journal of Advanced Manufacturing Technology》1997,13(3):172-181
Advanced engineering ceramic materials such as silicon carbides and silicon nitride have been used in many engineering applications. The abrasive waterjet is becoming the most recent cutting technique of such materials because of its inherent advantages.In the present study, two elastic-plastic erosion models are adopted to develop an abrasive waterjet model for cutting brittle materials. As a result, two cutting models based on fracture mechanics are derived and introduced. The suggested models predict the maximum depth of cut of the target material as a function of the fracture toughness and hardness as well as the process parameters.It is found that both models predict the same depth of cut within a maximum of 11%, for the practical range of process parameters used in the present study. The maximum depth of cut predicted by the suggested models are compared with published experimental results for three types of ceramics. The effect of process parameters on the maximum depth of cut for a given ceramic material is also studied and compared with experimental work. The comparison reveals that there is a good agreement between the models' predictions and experimental results, where the difference between the predicted and experimental value of the maximum depth of cut is found to be an average value of 10%.Nomenclature
C
abrasive efficiency factor, see equation (16)
-
C
1,C
2
c
1/4/3, c2/4/3
-
c
1,c
2
erosion models constants, see equations (1) and (2)
-
d
a
local effective jet diameter
-
d
j
nozzle diameter
- d
S
infinitesimal length along the kerf
-
f
1 (
E
)
function defined by equation (7)
-
f
2 (
E
)
function defined by equation (8)
-
f
3 (
e
)
function defined by equation (14)
-
g
1 (
E
)
f
1(
e
)/f
3
2
(
e
)
-
g
2 (
e
)
f
2(
e
/f
3
2
(
e
)
-
H
Vickers hardness of the target material
-
h
maximum depth of cut
-
K
c
fracture toughness of target material
-
k
kerf constant
-
M
linear removal rate, dh/dt
-
m
mass of a single particle
-
abrasive mass flow rate
-
water mass flow rate
-
P
water pressure
-
Q
total material removal rate, see equation (11)
-
R
abrasive to water mass flow rates
-
r
particle radius
-
S
kerf length
-
u
traverse speed
-
V
material volume removal rate (erosion rate)
- V
idealised volume removal by an individual abrasive particle
-
particle impact velocity
-
0
initial abrasive particle velocity
-
x,y
kerf coordinates
-
local kerf angle, Fig. 1
-
E
jet exit angle at the bottom of the workpiece, Fig. 1
-
particle density
-
w
water density
On leave from: Mechanical Engineering Department, Suez Canal University, Egypt.On leave from: Mechanical Power Engineering Department, Alexandria University, Egypt. 相似文献
18.
Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics 总被引:2,自引:0,他引:2
A study of the depth of jet penetration (or depth of cut) in abrasive waterjet (AWJ) cutting of alumina ceramics with controlled nozzle oscillation is presented and discussed. An experimental investigation is carried out first to study the effects of nozzle oscillation at small angles on the depth of cut under different combinations of process parameters. Based on the test conditions, it is found that nozzle oscillation at small angles can improve the depth of cut by as much as 82% if the cutting parameters are correctly selected. Depending on the other cutting parameters in this study, it is found that a high oscillation frequency (10–14 Hz) with a low oscillation angle (4–6°) can maximize the depth of cut. Using a dimensional analysis technique, predictive models for jet penetration when cutting alumina ceramics with and without nozzle oscillation are finally developed and verified. It is found that the model predictions are in good agreement with the experimental results with the average percentage errors of less than 2.5%. 相似文献
19.