首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the possible effects of caffeine ingestion on muscle metabolism and endurance during brief intense exercise. We tested 14 subjects after they ingested placebo or caffeine (6 mg/kg) with an exercise protocol in which they cycled for 2 min, rested 6 min, cycled 2 min, rested 6 min, and then cycled to voluntary exhaustion. In each exercise the intensity required the subject's maximal O2 consumption. Eight subjects had muscle and venous blood samples taken before and after each exercise period. The caffeine ingestion resulted in a significant increase in endurance (4.12 +/- 0.36 and 4.93 +/- 0.60 min for placebo and caffeine, respectively) and resulted in a significant increase in plasma epinephrine concentration throughout the protocol but not in norepinephrine concentration. During the first two exercise bouts, the power and work output were not different; blood lactate concentrations were not affected significantly by caffeine ingestion, but during the exercise bouts muscle lactate concentration was significantly increased by caffeine. The net decrease in muscle glycogen was not different between treatments at any point in the protocol, and even at the time of fatigue there was at least 50% of the original glycogen concentration remaining. the data demonstrated that caffeine ingestion can be an effective ergogenic aid for exercise that is as brief as 4-6 min. However, the mechanism is not associated with muscle glycogen sparing. It is possible that caffeine is exerting actions directly on the active muscle and/or the neural processes that are involved in the activity.  相似文献   

2.
In this study the effects of acute caffeine ingestion on exercise performance, hormonal (epinephrine, norepinephrine, insulin), and metabolic (free fatty acids, glycerol, glucose, lactate, expired gases) parameters during short-term withdrawal from dietary caffeine were investigated. Recreational athletes who were habitual caffeine users (n = 6) (maximum oxygen uptake 54.5 +/- 3.3 ml x kg-1 x min-1 and daily caffeine intake 761.3 +/- 11.8 mg/day) were tested under conditions of no withdrawal and 2-day and 4-day withdrawal from dietary caffeine. There were seven trials in total with a minimum of 10 days between trials. On the day of the exercise trial, subjects ingested either dextrose placebo or 6 mg/kg caffeine in capsule form 1 h before cycle ergometry to exhaustion at 80-85% of maximum oxygen uptake. Test substances were assigned in a random, double-blind manner. A final placebo control trial completed the experiment. There was no significant difference in any measured parameters among days of withdrawal after ingestion of placebo. At exhaustion in the 2- and 4-day withdrawal trials, there were significant increases in plasma norepinephrine in response to caffeine ingestion. Caffeine-induced increases in serum free fatty acids occurred after 4 days and only at rest. Subjects responded to caffeine with increases in plasma epinephrine (P < 0.05) at exhaustion and prolonged exercise time in all caffeine trials compared with placebo, regardless of withdrawal from caffeine. It is concluded that increased endurance is unrelated to hormonal or metabolic changes and that it is not related to prior caffeine habituation in recreational athletes.  相似文献   

3.
The present study was conducted to investigate the in vivo effects of an intrahepatic infusion of deionized water during exercise in rats. Adrenodemedullated male Sprague-Dawley rats were continuously infused for 30 min either at rest or during treadmill exercise (26 m/min, 0% grade). Rats were randomly assigned to one of three infusion conditions (52 micro ul/min) with either deionized water (PW) or saline (PS; NaCl; 0.9%) via the hepatic portal vein or deionized water through the jugular vein (JW). The exercise period caused a significant (P < 0.05) decrease in liver glycogen and relative liver water content and peripheral and portal blood glucose and insulin while increasing peripheral and portal glucagon and K+ plasma concentrations. These responses, with the exception of K+, were not influenced by the different types of infusions. The increase in K+ during exercise was significantly (P < 0.05) higher in JW rats than in the PW and PS groups. Both the infusion and exercise protocols did not significantly alter the liver weight-to-body weight ratio, plasma osmolality, free fatty acids, beta-hydroxybutyrate, Na+, Cl-, vasopressin, and catecholamine concentrations. It is concluded that an hepatic portal infusion of deionized water does not specifically alter the metabolic and hormonal responses to exercise in rats.  相似文献   

4.
The effects of coca chewing on prolonged submaximal exercise responses were investigated in chronic coca chewers and compared with a group of nonchewers. At rest, coca chewing during a 1-h period was followed by a significant increase in blood glucose, free fatty acid, and norepinephrine concentrations and a significant reduction in insulin plasma level. During prolonged (1-h) submaximal (65-70% peak O2 uptake) exercise, chewers displayed a significantly greater adrenergic activation (as evidenced by a higher level of plasma epinephrine) and an increased use of fat (as evidenced by a lower respiratory exchange ratio). The gradual increase in oxygen uptake (O2 drift) commonly observed during prolonged exercise was blunted in coca chewers. This blunting in O2 drift is not related to coca-induced changes in ventilatory or lactate responses to exercise but could possible be related to an enhanced glucose utilization by chewers during the late phase of exercise. The present results provide experimental evidence of the physiological effects of coca chewing that could explain the better ability of coca users to sustain strenuous work for an extended period of time.  相似文献   

5.
The systemic and regional hemodynamic effects of inhibition of endothelium-derived relaxing factor/nitric oxide (EDRF/NO) were studied in awake, indomethacin-treated rats. The radiolabeled microsphere method was used to determine the cardiac output, systemic vascular resistance (SVR), and regional blood flows and regional vascular resistances in 12 tissues before and after infusion of the EDRF/NO synthesis inhibitor, NG-monomethyl-L-arginine (NMMA, 100 mg/kg), and after reversal of NMMA by infusion of L-arginine (300 mg/kg). NMMA infusion resulted in increases in the blood pressure and SVR. After NMMA, blood flows were decreased to the cerebrum, heart, kidney, spleen, gastrointestinal tract, skin, ear, and white fat, whereas flow in the hepatic artery was increased. Vascular resistances were increased in every tissue studied except the hepatic artery, in which the resistance decreased after NMMA. L-arginine restored the vascular resistance to control values in 8 of the 12 tissues. The magnitude of the increase in the regional resistance was not uniform among the organs studied, and ranged from a maximum of 253% in brown fat to 22% in heart. These results indicate that EDRF/NO is an important mediator of regional hemodynamic control in numerous tissues of the intact rat. The marked heterogeneity in the magnitude of basal EDRF/NO-dependent tone suggests that the mechanisms mediating this cardiovascular control system are regulated locally.  相似文献   

6.
The role of reduced muscle pH in the development of skeletal muscle fatigue is unclear. This study investigated the effects of lowering skeletal muscle intracellular pH by exposure to 30% CO2 on the number of isometric tetani needed to induce significant fatigue. Isolated single mouse muscle fibers were stimulated repetitively at intervals of 4-2.5 s by using 80-Hz, 400-ms tetani at 28 degrees C in Tyrode solution bubbled with either 5 or 30% CO2. Stimulation continued until tetanic force had fallen to 40% of the initial value. Exposure to 30% CO2 caused a significant fall in intracellular pH of approximately 0.3 pH unit but did not cause any significant changes in initial peak tetanic force. During the course of repetitive stimulation, intracellular pH fell by approximately 0.3 pH unit in both normal and acidified fibers. The number of tetani needed to reduce force to 40% of the initial value was not significantly different in 5 and 30% CO2 Tyrode. The sole effect of acidosis was to reduce the rate of relaxation of force, especially in fatigued fibers. It is concluded that, at 28 degrees C, acidosis per se does not accelerate the development of fatigue during repeated tetanic stimulation of isolated mouse skeletal muscle fibers.  相似文献   

7.
Electrical stimulation-induced leg muscle contractions provide a useful model for examining the role of leg muscle neural afferents during low-intensity exercise in persons with spinal cord-injury and their able-bodied cohorts. Eight persons with paraplegia (SCI) and 8 non-disabled subjects (CONTROL) performed passive knee flexion/extension (PAS), electrical stimulation-induced knee flexion/extension (ES) and voluntary knee flexion/extension (VOL) on an isokinetic dynamometer. In CONTROLs, exercise heart rate was significantly increased during ES (94 +/- 6 bpm) and VOL (85 +/- 4 bpm) over PAS (69 +/- 4 bpm), but no changes were observed in SCI individuals. Stroke volume was significantly augmented in SCI during ES (59 +/- 5 ml) compared to PAS (46 +/- 4 ml). The results of this study suggest that, in able-bodied humans, Group III and IV leg muscle afferents contribute to increased cardiac output during exercise primarily via augmented heart rate. In contrast, SCI achieve raised cardiac output during ES leg exercise via increased venous return in the absence of any change in heart rate.  相似文献   

8.
BACKGROUND: We evaluated brain tissue oxygen pressure (PO2), carbon dioxide pressure (PCO2) and pH during ischemia with brain temperature at 35 degrees and 18 degrees C in the same patient. METHODS: Surgery was performed in a 60-year-old woman to clip a large aneurysm in the left internal carotid artery (ICA). A Paratrend 7 probe measuring PO2, PCO2, and pH was inserted into tissue at risk for ischemia during ICA occlusion and brain protection was provided with 9% desflurane. One week later, hypothermic circulatory arrest with brain temperature at 18 degrees C was performed for aneurysm clipping and tissue measurements were obtained during ischemia and rewarming. RESULTS: At 35 degrees C, ICA occlusion for 16 minutes produced tissue hypoxia (PO2 = 0) and acidosis (pH = 6.70). The rate of increase of hydrogen ion (H+) reached 50 nEq.L(-1).min(-1) during ICA occlusion and there was a slow recovery of acidosis at the end of the ischemic period. During hypothermic circulatory arrest, tissue PO2 was sensitive to decreases in blood pressure and decreased rapidly during exsanguination. Although tissue pH decreased to 6.5 with 30 min of no pump flow, the rate of H+ increase during hypothermic arrest was one-third of that seen during ischemia at 35 degrees C. During rewarming from profound hypothermia, two phases of recovery from acidosis were observed, one during CO2 clearance and one after tissue reoxygenation. Recovery of acidosis occurred sooner at 18 degrees C than at 35 degrees C. CONCLUSIONS: These results show that tissue acidosis develops more slowly and recovers more rapidly with hypothermic ischemia. This may be an important mechanism of reduced ischemic injury during hypothermia.  相似文献   

9.
OBJECTIVE: To determine whether two effects of acute caffeine ingestion--decrease in cerebral blood flow and increase in brain glucose use--alter the recognition of and physiologic responses to hypoglycemia. DESIGN: On two occasions, a hyperinsulinemic glucose clamp technique (2 mU/kg body weight per minute) was used to maintain plasma glucose at 5 mmol/L for 90 minutes, followed by 60 minutes at 3.8 mmol/L, and then 2.8 mmol/L. After 30 minutes at 5 mmol/L, participants consumed, using a randomized, double-blind design, caffeine-free cola with or without caffeine (400 mg) added. SETTING: Yale Clinical Research Center. PARTICIPANTS: Eight healthy, nonobese volunteers (5 men; age range, 20 to 33 years). MEASUREMENTS: Middle cerebral artery velocity (V MCA), counter-regulatory hormone levels, hypoglycemic symptoms, and cognitive function (P300 evoked potentials). RESULTS: Caffeine caused an immediate and sustained 23% decrease in VMCA from 64 to 49 cm/s (point estimate of difference, +15 cm/s [95% CI, 10 to 21 cm/s], P < 0.001). At a glucose level of 3.8 mmol/L, only the participants given caffeine had warning symptoms and "felt hypoglycemic." Moreover, the level of epinephrine was 118% ([CI of point difference, 76% to 158%] [CI, P < 0.001]) higher after caffeine consumption compared with placebo. Similarly, levels of norepinephrine (41% [CI, 26% to 60%], P < 0.002), cortisol (65% [CI, 26% to 78%], P < 0.008), and growth hormone (60% [CI, 16% to 143%], P < 0.05) were higher after caffeine consumption compared with placebo. At 2.8 mmol/L, epinephrine (40% [point estimate of the percentage difference], P < 0.05), norepinephrine (27%, P < 0.05), and cortisol (24%, P < 0.05) levels were higher, participants were more aware (P < 0.02) of hypoglycemia, and P300 latency was prolonged in the group that consumed caffeine (7.2%, P < 0.05). CONCLUSIONS: Acute ingestion of caffeine is associated with sympathoadrenal activation and awareness of hypoglycemia at a glucose level not usually considered hypoglycemic. Our data suggest that individuals who ingest moderate amounts of caffeine may develop hypoglycemic symptoms if plasma glucose levels fall into the "low-normal" range, as might occur in the late postprandial period after ingestion of a large carbohydrate load.  相似文献   

10.
Two studies, each utilizing short-term treadmill exercise of a different intensity, assessed the metabolic and hormonal responses of women to exercise in the morning (AM) and late afternoon (PM). In study 1, plasma concentrations of growth hormone, arginine vasopressin, catecholamines, adrenocorticotropic hormone, cortisol, lactate, and glucose were measured before, during, and after high-intensity exercise (90% maximal O2 uptake) in the AM and PM. In study 2, plasma concentrations of adrenocorticotropic hormone, cortisol, lactate, and glucose were measured before, during, and after moderate-intensity exercise (70% maximal O2 uptake) in the AM and PM in the follicular (days 3-9), midcycle (days 10-16), and luteal (days 18-26) phases of the menstrual cycle. The results of studies 1 and 2 revealed no significant diurnal differences in the magnitude of responses for any measured variable. In addition, study 2 revealed a significant time-by-phase interaction for glucose (P = 0. 014). However, net integrated responses were similar across cycle phases. These data suggest that metabolic and hormonal responses to short-term, high-intensity exercise can be assessed with equal reliability in the AM and PM and that there are subtle differences in blood glucose responses to moderate-intensity exercise across menstrual cycle phase.  相似文献   

11.
BACKGROUND: The recommended maximum water temperature for public hot tubs has been set at 40.0 degrees C, but no research has been published on human immersion in hot water at higher temperatures. HYPOTHESIS: We hypothesized that thermoregulatory and cardiovascular responses at two water temperatures would be proportional to the water:blood temperature gradients. METHODS: Six healthy men were immersed for 21 min in circulating hot water at 40.0 and 41.5 degrees C in separate trials in random order 1-3 wk apart. Measurements included heart rate, systolic BP, esophageal, rectal, and non-immersed skin temperatures, sweat rate, and perceived comfort. RESULTS: The rise in all body temperatures, sweat rate, and heart rate were significantly greater in the 41.5 vs. 40.0 degrees C water. Peak esophageal temperatures were 38.3 +/- 0.2 degrees C vs. 37.8 +/- 0.03 degrees C, peak sweat rates were 0.48 +/- 0.05 vs. 0.32 +/- 0.03 kg x m(-2) x h(-1), and peak heart rates were 123 +/- 7 vs. 108 +/- 5 bpm, respectively. Systolic BPs followed different patterns of response in each trial, whereas diastolic pressures were not different between trials. Comfort at each level of immersion was reduced during the 41.5 degrees C trial compared with the 40.0 degrees C in excess of that predicted by difference in esophageal temperature between the trials. CONCLUSIONS: These results suggest that risks of hyperthermia or adverse cardiovascular effects in hot tubs may not be greater in water above 40.0 degrees C unless perceptual judgment is impaired. Hypotension when standing to exit the tub occurred in both trials and may represent a potential hazard to hot tub use.  相似文献   

12.
OBJECTIVE: Since there is limited information concerning caffeine's metabolic effects on the human brain, the authors applied a rapid proton echo-planar spectroscopic imaging technique to dynamically measure regional brain metabolic responses to caffeine ingestion. They specifically measured changes in brain lactate due to the combined effects of caffeine's stimulation of glycolysis and reduction of cerebral blood flow. METHOD: Nine heavy caffeine users and nine caffeine-intolerant individuals, who had previously discontinued or substantially curtailed use of caffeinated products because of associated anxiety and discomforting physiological arousal, were studied at baseline and then during 1 hour following ingestion of caffeine citrate (10 mg/kg). To assess state-trait contributions and the effects of caffeine tolerance, five of the caffeine users were restudied after a 1- to 2-month caffeine holiday. RESULTS: The caffeine-intolerant individuals, but not the regular caffeine users, experienced substantial psychological and physiological distress in response to caffeine ingestion. Significant increases in global and regionally specific brain lactate were observed only among the caffeine-intolerant subjects. Reexposure of the regular caffeine users to caffeine after a caffeine holiday resulted in little or no adverse clinical reaction but significant rises in brain lactate which were of a magnitude similar to that observed for the caffeine-intolerant group. CONCLUSIONS: These results provide direct evidence for the loss of caffeine tolerance in the human brain subsequent to caffeine discontinuation and suggest mechanisms for the phenomenon of caffeine intolerance other than its metabolic effects on elevating brain lactate.  相似文献   

13.
Beta-galactosidase activity is known to exist in Drosophila melanogaster, but a detailed analysis of the tissue-specific patterns of activity has not previously been reported. Such an analysis is of particular interest because Drosophila is commonly used for making transformants that carry fusion genes in which the E. coli beta-galactosidase gene, lacZ, is used as a reporter gene. When these transformants are analyzed for beta-galactosidase activity by using chromogen X-gal staining, the method does not distinguish true fusion-gene activity from endogenous beta-galactosidase activity or from the beta-galactosidase activity of bacterial contaminants. Therefore, detailed maps of endogenous beta-galactosidase activity in this organism would help to prevent errors in data interpretation and would indicate which stages were most appropriate for experiments with the lacZ transformants. We have constructed such maps by applying X-gal staining methods to serial frozen sections and whole mounts of larval, prepupal, pupal, and adult stages of D. melanogaster reared under axenic conditions. Results showed endogenous beta-galactosidase activity in a variety of organs including the larval intestine, spiracles, lymph glands, cellular epidermis, and eye-antenna imaginal discs; the pupal cellular epidermis, lymph glands, imaginal tissues, fat body, and spiracle; and the adult pericardial cells, thoracic nephrocytes, ventriculus, and reproductive system. The good correlation between staining and metamorphic remodeling and phagocytic activity indicates that endogenous beta-galactosidase is physiologically interesting.  相似文献   

14.
The relationship between ratings of perceived exertion (RPE) and metabolic responses was examined during aerobic dance exercise with combined arm and leg movements. 16 women with previous aerobic dance instructional experience performed three consecutive trials of 8 min. each of aerobic dance exercise at a cadence of 124 and 138 beats.min.-1. Estimates of RPE reported at the end of each trial were significantly different across the trials while heart rate and % maximum heart rate were significantly different between Trials 1 and 3. Correlations and partial correlations between RPE and all metabolic variables were not significant across trials and with trials combined except for ventilation. Results indicated that RPE should not be used singularly as an indicator of exercise intensity during aerobic dance exercise.  相似文献   

15.
Our objectives were to determine effects of head-out immersion (HOI), scuba breathing, and water temperature on cardiorespiratory responses to maximal aerobic work. Measurements of VO2, VE, and heart rate (HR) were obtained on seven men (27 yr, 177 cm, 67 kg) as they performed the same upright bicycling exercise to exhaustion (4-5 min) in 23 degrees C air and 30 degrees C water. Maximal oxygen uptake (VO2 max) during HOI was 3.18 liters - min-1, which was not statistically different from the mean of 3.29 liters- min-1 in air. When compressed air was breathed via scuba during HOI, VO2 max was 3.12 liters- min-1 and not significantly different from that when room air was breathed and a low-resistance valve in water was used. HOI decreased VE by 15.7 liters - min-1 and HR by 10 beats (b) - min-1. Scuba breathing further reduced VE by 22.0 liters - min-1. Similar measurements were made on four of the subjects after 18 min of HOI in water temperatures of 35,30, and 25 degrees C. Water temperature had no significant affect on VO2 max, although HR was 8 b- min-1 lower in 30 degrees C and 15 b - min-1 lower in 25 degrees C as compared to 35 degrees C water. The results show that VO2 max was not significantly changed by HOI, scuba breathing, or brief exposures to 25, 30, and 35 degrees C water, despite significant reductions that occurred for VE and HR.  相似文献   

16.
In the present study we have dissected the transport pathways between the ER and the Golgi complex using a recently introduced (Kuismanen, E., J. J?ntti, V. M?kiranta, and M. Sariola. 1992. J. Cell Sci. 102:505-513) inhibition of transport by caffeine at 20 degrees C. Recovery of the Golgi complex from brefeldin A (BFA) treatment was inhibited by caffeine at reduced temperature (20 degrees C) suggesting that caffeine inhibits the membrane traffic between the ER and the Golgi complex. Caffeine at 20 degrees C did not inhibit the BFA-induced retrograde movement of the Golgi membranes. Further, incubation of the cells in 10 mM caffeine at 20 degrees C had profound effects on the distribution and the organization of the pre-Golgi and the Golgi stack membranes. Caffeine treatment at 20 degrees C resulted in a selective and reversible translocation of the pre- and cis-Golgi marker protein (p58) to the periphery of the cell. This caffeine-induced effect on the Golgi complex was different from that induced by BFA, since mannosidase II, a Golgi stack marker, remained perinuclearly located and the Golgi stack coat protein, beta-COP, was not detached from Golgi membranes in the presence of 10 mM caffeine at 20 degrees C. Electron microscopic analysis showed that, in the presence of caffeine at 20 degrees C, the morphology of the Golgi stack was altered and accumulation of numerous small vesicles in the Golgi region was observed. The results in the present study suggest that caffeine at reduced temperature (20 degrees C) reveals a functional interface between the pre-Golgi and the Golgi stack.  相似文献   

17.
Excessive deposition of visceral adipose tissue is known to predispose to cardiovascular diseases. Considerable epidemiological and experimental evidence suggests that many physiological factors are involved in the aetiology of premature atherosclerosis associated with visceral obesity. Insulin resistance is frequently associated with abdominal obesity, and probably plays an important role in the pathophysiology of hypertriglyceridaemia, low levels of plasma high-density lipoprotein (HDL)-cholesterol, hypertension and reduced fibrinolytic activity. Exercise training may counteract the aberrant metabolic profile associated with abdominal obesity both directly and as a consequence of body fat loss. Exercise may increase insulin sensitivity, favourably alter the plasma lipoprotein profile and improve fibrinolytic activity. Changes in the activity of insulin-sensitive glucose transporters and of skeletal muscle lipoprotein lipase are some of the possible explanations for the increased insulin sensitivity and improved blood lipid profile associated with regular exercise. This review presents physical training as a relevant nonpharmacological tool in the treatment of abdominal obesity and associated metabolic disorders. The impact of regular exercise on the different aspects of the insulin resistance syndrome is discussed. The roles of gender, age and the state of insulin resistance on the metabolic effect of physical training are also considered.  相似文献   

18.
The aim of the present study was to determine the effect of different environmental conditions on physiological response to exercise. Four winter acclimatised, nonheat acclimated horses of different breeds were exercised at 20 degrees C/40% RH (CD), 30 degrees C/40% RH (HD) and 30 degrees C/80% RH (HH). The exercise test was designed to represent the structure and intensity of a One star Speed and Endurance test (competition exercise test [CET]). All 4 horses were able to complete the full CET (60 min + 30 min active recovery) in CD and HD, but only one horse completed the CET in HH. Two horses were stopped because of pronounced general fatigue and one because of a right atrial temperature (TRA) of 43 degrees C. Oxygen uptake on each phase was not different between CD and HD, but was higher during Phases B, C and D in HH. Mean peak TRA at the end of Phase D was 40.3 +/- 0.2, 41.6 +/- 0.4 and 42 +/- 0.3 degrees C for CD, HD and HH, respectively. Corresponding, mean peak rectal temperatures (TREC) following Phase D were 39.5 +/- 0.1, 40.6 +/- 0.1 and 41.5 +/- 0.1 degree C for CD, HD and HH, respectively. Mean time to peak TREC was 9.3 +/- 1.1 (CD), 7.3 +/- 1.8 (HD) and 10.8 +/- 2.3 (HH) min and was not significantly different between conditions (P > 0.05). Heat dissipation amounted to 83 +/- 1, 73 +/- 2 and 70 +/- 1% of heat production in CD, HD and HH, respectively. Weight loss was significantly correlated with both body surface area (CD r = 0.85; HD r = 0.87; HH r = 0.81) and bodyweight (CD r = 0.97; HD r = 0.93; HH r = 0.94). The greatest weight loss recorded was 4.6% bodyweight in one horse in HD. The mean increase in exercise intensity over the whole CET (in terms of VO2) of HD and HH and HH compared with CD was 5 +/- 3 and 14 +/- 3% higher, respectively. The exercise induced hyperthermia and the reduced capacity for heat dissipation produced partial compensatory responses in minute ventilation (VE), particularly during Phase C, when the horses were trotting. In HD, the increase in VE was achieved mainly through an increase in frequency, whilst in HH it was achieved through an increase in tidal volume (VT). The horses demonstrated a high degree of tolerance to environmental heat load, suggesting a high thermoregulatory capacity. However, for unacclimatised animals exercising in severely hot and humid conditions, performance may be limited.  相似文献   

19.
To determine the effects of acute coca use on the hormonal and metabolic responses to exercise, 12 healthy nonhabitual coca users were submitted twice to steady-state exercise (approximately 75% maximal O2 uptake). On one occasion, they were asked to chew 15 g of coca leaves 1 h before exercise, whereas on the other occasion, exercise was performed after 1 h of chewing a sugar-free chewing gum. Plasma epinephrine, norepinephrine, insulin, glucagon, and metabolites (glucose, lactate, glycerol, and free fatty acids) were determined at rest before and after coca chewing and during the 5th, 15th, 30th, and 60th min of exercise. Simultaneously to these determinations, cardiorespiratory variables (heart rate, mean arterial blood pressure, oxygen uptake, and respiratory gas exchange ratio) were also measured. At rest, coca chewing had no effect on plasma hormonal and metabolic levels except for a significantly reduced insulin concentration. During exercise, the oxygen uptake, heart rate, and respiratory gas exchange ratio were significantly increased in the coca-chewing trial compared with the control (gum-chewing) test. The exercise-induced drop in plasma glucose and insulin was prevented by prior coca chewing. These results contrast with previous data obtained in chronic coca users who display during prolonged submaximal exercise an exaggerated plasma sympathetic response, an enhanced availability and utilization of fat (R. Favier, E. Caceres, H. Koubi, B. Sempore, M. Sauvain, and H. Spielvogel. J. Appl. Physiol. 80: 650-655, 1996). We conclude that, whereas coca chewing might affect glucose homeostasis during exercise, none of the physiological data provided by this study would suggest that acute coca chewing in nonhabitual users could enhance tolerance to exercise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号