首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Septins are evolutionarily conserved proteins that contain a GTPase domain and are capable of forming filaments at the cell periphery. Septins are involved in many essential cellular processes, such as cytokinesis and cell polarization, and are used as markers of morphogenesis in several fungi. Dimorphism in fungi enables cells to switch between morphologies (yeast or filament forms), due to changes in the temperature of the environment. We analysed the localization of septin proteins in yeast and filamentous cells of the dimorphic fungus Paracoccidioides brasiliensis, a common cause of granulomatous mycosis. In order to determine septin localization, we first cloned Cdc12p, a septin homolog from P. brasiliensis, and expressed it in Escherichia coli. Following PbCdc12p purification, specific serum against PbCdc12p were raised for use in immunofluorescence assays. We observed the hourglass and ring forms of septin filaments during cell division in yeast. Septin filaments were also simultaneously localized in the necks of multiple budding cells. A distinctive pattern of punctuate and/or diffuse localization was also seen in the periphery of multinucleate yeast cells and at the tips and septa of filamentous cells. A more diffuse and punctuate pattern of localization observed in P. brasiliensis cells seems to be unique to filamentous and dimorphic fungi and may be related to their specialization in cell wall deposition, morphogenesis and cell cycle control.  相似文献   

3.
We report the cloning of a Paracoccidioides brasiliensis cDNA, here named PbCnx, encoding the homologue of the endoplasmic reticulum molecular chaperone calnexin. Calnexin specifically recognizes monoglucosylated glycoproteins in the endoplasmic reticulum, thus being an essential component of the complex that interacts with the folded state of nascent secreted glycoproteins. The PbCnx open reading frame was found in a 1701 base pair (bp) fragment that encodes a 567 amino acid protein with an estimated mass of 62 680 Da. Northern and Southern blot hybridizations showed that PbCnx is encoded by a single, or a low number of, gene copies. PbCnx contains the hallmark KPEDWD motifs that are found in all members of the calnexin/calreticulin family proteins. A cDNA-encoding PbCnx was overexpressed as recombinant protein in Escherichia coli. The purified recombinant PbCnx was recognized by 6 out of 10 sera from PCM patients, a result that rules out its possible consideration for further use in diagnosis. Using confocal microscopy with anti-PbCnx mouse serum against yeast forms, a cytoplasmic staining pattern was observed.  相似文献   

4.
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of the most frequent systemic mycosis in Latin America. In humans, infection starts by inhalation of fungal propagules, which reach the pulmonary epithelium and differentiate into the yeast parasitic phase. Here we describe the characterization of a Dfg5p (defective for filamentous growth) homologue of P. brasiliensis, a predictable cell wall protein, first identified in Saccharomyces cerevisiae. The protein, the cDNA and genomic sequences were analysed. The cloned cDNA was expressed in Escherichia coli and the purified rPbDfg5p was used to obtain polyclonal antibodies. Immunoelectron microscopy and biochemical studies demonstrated the presence of PbDfg5p in the fungal cell wall. Enzymatic treatments identified PbDfg5p as a beta-glucan linked protein that undergoes N-glycosylation. The rPbDfg5p bound to extracellular matrix components, indicating that those interactions could be important for initial steps leading to P. brasiliensis attachment and colonization of host tissues.  相似文献   

5.
6.
Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. The production of eicosanoids during fungal infection has been associated with the biology of these microorganisms and modulation of host immune response. The aim of our study was to evaluate whether P. brasiliensis strains with high or low virulence produce leukotriene B4 (LTB4), using endogenous and/or exogenous sources of arachidonic acid (AA). Moreover, we assessed whether this fungus might use the same metabolic pathway, described for mammalian cells, that involves the lipoxygenase (LOX) enzyme. The association between the production of this eicosanoid and fungus survival and growth was also evaluated. Our results showed that P. brasiliensis, irrespective of its virulence, produces high levels of LTB4 using endogenous AA. In addition, in cultures treated with exogenous AA, LTB4 levels were significantly higher, showing that this fungus also uses exogenous sources of fatty acids. Treatment with MK886, which blocks the activity of lipoxygenase, by inhibiting five-lipoxygenase-activating protein (FLAP) or with nordihydroguaiaretic acid (NDGA), a non-selective lipoxygenase inhibitor, resulted in a significant reduction in LTB4 levels, indicating that the fungus produces this eicosanoid by using the LOX pathway or an enzyme with biochemically similar function. The significant reduction in viability detected in cultures treated with these inhibitors was, however, restored by adding exogenous LTB4 , confirming the role of this eicosanoid in fungus survival. Moreover, the addition of LTB4 to cultures capable of producing LTs induces fungal growth. These results provide a foundation for additional studies on the contributions of LTB4 in P. brasiliensis virulence.  相似文献   

7.
The nucleotide sequence of a chitin synthase gene (CHS2) of the dimorphic fungal human pathogen Paracoccidioides brasiliensis has been determined. The deduced amino acid sequence of Chs2p consists of 1043 residues and is highly homologous to other class II fungal chitin synthases. Computational structural analyses suggest very high similarity to other fungal chitin synthases with a highly variable region at the cytosolic amino-terminal region which may be related to its possible zymogenic nature, and the putative catalytic region close to seven membrane-spanning regions at the carboxyl terminus. The nucleotide sequence of CHS2 and its flanking regions has been submitted to GenBank under Accession Number Y09231. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A genomic clone encoding the Paracoccidioides brasiliensis orotidine monophosphate decarboxylase gene (PbrURA3) was isolated by screening a subgenomic plasmid DNA library of this fungus, using a PCR amplification product of the gene as a probe. Sequence analysis revealed that the gene contains an open reading frame of 855 bp with a single intron (162 bp), and encodes a putative 285 amino acids polypeptide of estimated molecular weight 31.1 kDa and isoelectric point 6.5. The deduced amino acid sequence predicted a 73.4% identity with orotidine monophosphate decarboxylase of Aspergillus nidulans. Functionality of the gene was demonstrated by transformation into a Saccharomyces cerevisiae ura3 null mutant.  相似文献   

9.
10.
Within the context of studies on genes from Paracoccidioides brasiliensis (Pb) potentially associated with fungus-host interaction, we isolated a 61 kDa protein, pI 6.2, that was reactive with sera of patients with paracoccidioidomycosis. This protein was identified as a peroxisomal catalase. A complete cDNA encoding this catalase was isolated from a Pb cDNA library and was designated PbcatP. The cDNA contained a 1509 bp ORF containing 502 amino acids, whose molecular mass was 57 kDa, with a pI of 6.5. The translated protein PbCATP revealed canonical motifs of monofunctional typical small subunit catalases and the peroxisome-PTS-1-targeting signal. The deduced and the native PbCATP demonstrated amino acid sequence homology to known monofunctional catalases and was most closely related to catalases from other fungi. The protein and mRNA were diminished in the mycelial saprobic phase compared to the yeast phase of infection. Protein synthesis and mRNA levels increased during the transition from mycelium to yeast. In addition, the catalase protein was induced when cells were exposed to hydrogen peroxide. The identification and characterization of the PbCATP and cloning and characterization of the cDNA are essential steps for investigating the role of catalase as a defence of P. brasiliensis against oxygen-dependent killing mechanisms. These results suggest that this protein exerts an influence in the virulence of P. brasiliensis.  相似文献   

11.
12.
13.
Paracoccidioidomycosis is a systemic mycosis endemic to Latin America, with Paracoccidioides brasiliensis and P. lutzii being the causal agents of this disorder. Several issues have been raised in the 100 years since its discovery and in this article we discuss features of this fascinating fungal pathogen, including its biology, eco‐epidemiology and aspects of its pathogenicity. We also consider some of its virulence determinants, the most recent advances in the study of its metabolic pathways and the molecular and genetic research tools developed for this research. We also review the animal models used to study host–fungal interactions and how the host defence mechanisms against this pathogen work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This study focuses on gene expression during crucial biological phenomena of the dimorphic fungal human pathogen Paracoccidioides brasiliensis, the conidia‐to‐yeast (C‐Y) transition and the conidia‐to‐mycelia (C‐M) germination. We studied 10 genes involved in different cellular functions: oxidative stress response (alternative oxidase (AOX), superoxide dismutase (SOD), flavodoxin, conserved hypothetical protein (Y20)); cell metabolism (glyceraldehyde‐3‐phosphate dehydrogenase (GADPH), cholestenol Delta‐isomerase (ChDI), glycine dehydrogenase (GDh)) and heat shock response (Heat shock protein 90 (HSP90)), and cell synthesis and wall structure (glucan synthase‐1 (GS‐1), α‐1,3‐glucan synthase (αGS), and mannosyltransferase (MT)). Gene expression was measured during the first 72 h and 96 h of C‐Y and C‐M, respectively, previously shown to be a fundamental time frame for the consolidation of these cellular processes. The gene expression of AOX, GAPDH, HSP90, MT, αGS, and GDh was significantly increased during the C‐Y transition, while SOD, ChDI, GAPDH, MT, GDh, and GS‐1 were increased during C‐M germination. Additionally, some were highly expressed in each process: AOX, HSP90, and αGS during C‐Y; SOD, ChDI, and GS‐1 during C‐M. Altogether, these data add new information regarding gene expression during the C‐Y and C‐M processes. Future research will be targeted to further characterize the true relevance of the studied genes during the morphological transition, either during adaptation to the environment or to the infected host. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most frequent systemic mycosis in Latin America. Our group has been working with paracoccin, a P. brasiliensis lectin with MM 70 kDa, which is purified by affinity with immobilized N‐acetylglucosamine (GlcNAc). Paracoccin has been described to play a role in fungal adhesion to extracellular matrix components and to induce high and persistent levels of TNFα and nitric oxide production by macrophages. In the cell wall, paracoccin colocalizes with the β‐1,4‐homopolymer of GlcNAc into the budding sites of the P. brasiliensis yeast cell. In this paper we present a protocol for the chitin‐affinity purification of paracoccin. This procedure provided higher yields than those achieved by means of the technique based on the affinity of this lectin with GlcNAc and had an impact on downstream assays. SDS–PAGE and Western blot analysis revealed similarities between the N‐acetylglucosamine‐ and chitin‐bound fractions, confirmed by MALDI–TOF–MS of trypsinic peptides. Western blot of two‐dimensional gel electrophoresis of the yeast extract showed a major spot with Mr 70 000 and pI approximately 5.63. Morevover, an N‐acetyl‐β‐D ‐glucosaminidase activity was reported for paracoccin, thereby providing new insights into the mechanisms that lead to cell wall remodelling and opening new perspectives for its structural characterization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N‐glycosylation of proteins such as N‐acetyl‐β‐d ‐glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)‐mediated inhibition of N‐linked glycosylation on α‐ and β‐(1,3)‐glucanases and on α‐(1,4)‐amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α‐ or β‐(1,3)‐glucanase production and secretion. Moreover, incubation with TM did not alter α‐ and β‐(1,3)‐glucanase activity in yeast and mycelium cell extracts. In contrast, α‐(1,4)‐amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N‐glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N‐glycans were essential for α‐(1,4)‐amylase activity involved in the production of malto‐oligosaccharides that act as primer molecules for the biosynthesis of α‐(1,3)‐glucan. Our results suggest that reduced fungal α‐(1,4)‐amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells. © 2013 The Authors. Yeast published by John Wiley & Sons Ltd.  相似文献   

17.
18.
The chemical, physical and thermal properties of a new lignocellulosic fiber from Brazil (Imperata brasiliensis) were examined by SEM, chemical composition, XRD, FTIR, and TGA. Fibers were analyzed aiming to compare the properties of its new natural resource with other lignocellulosic fibers used as a source of nanocellulose extraction. Microscopy analysis demonstrated that the bundle of fibers presented a variety of size and shapes, ranging between 25 and 500 µm, while a single fiber has a diameter of 5 µm. The chemical composition showed the presence of 37.7% of cellulose, 35% of hemicellulose and 14.3% of lignin. The total crystallinity index (CI) calculated using Segal method was of 36.6%. By TGA, it was possible to identify the degradation step of each primary component of lignocellulosic fiber and to observe that the onset degradation temperature was 157°C. With the results of ATR-FTIR technique, it was possible to estimate the CI, and the results exhibited good agreement with that calculated by XRD. Finally it was possible to conclude that fibers obtained from Imperata brasiliensis are suitable to be used as a resource for nanocellulose obtainment since presents almost the same properties of other lignocellulosic fibers successfully used in literature for nanocellulose extraction.  相似文献   

19.
BACKGROUND: Ginger rhizome (Zingiber officinale Roscoe) contains ginger proteases and has proteolytic activity. Ginger proteases have been used for tenderizing meat but rarely for milk clotting. The purpose of this study was to purify ginger proteases and to research their biochemical characteristics. RESULTS: The milk clotting activity (MCA) and proteolytic activity (PA) of the proteases was stable after storage at 4 °C for 24 h. The MCA and PA of fresh ginger juice with 0.2% L ‐ascorbic acid remained stable for 6 days at 4 °C. When under storage at ?80 °C for 2 months, the MCA and PA of the fresh ginger juice and acetone precipitate were still high. Two peaks with protease activity were purified from a DEAE FF ion‐exchange column; the specific activity (units mg?1 protein) of the MCA (MCSA) and PA (PSA) for the first peak was significantly higher than the second peak (P < 0.05). The protease activity of the ginger proteases was significantly inhibited by E‐64, leupeptin, and iodoacetic acid. Zymography results showed that two protease fractions purified from ginger juice with 62 and 82 kDa had a higher PA against α‐ and β‐casein than against κ‐casein. CONCLUSION: The ascorbic acid addition significantly stabilized the MCA and PA of ginger proteases. The protease inhibition test suggested that ginger proteases belonged to the cysteine type. The biochemical characteristics of ginger protease described in this paper can provide useful information for making new milk curd products. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Electrospray ionization liquid chromatography/tandem mass spectrometry was used to identify the fatty acid and triacylglycerol (TAG) composition of pequi (Caryocar brasiliensis Camb.) oil. The fatty acid composition was relatively simple; the oil contained approximately 442 and 517 g kg?1 of palmitic and oleic acids respectively. Linoleic and stearic acids were found in much smaller amounts. The TAG composition of pequi oil is also relatively simple with trioleoyl glycerol (OOO, 56 g kg?1), palmitoyl dioleoyl glycerol (POO, 466 g kg?1) and dipalmitoyl oleoyl glycerol (POP, 452 g kg?1) comprising 974 g kg?1 of the total. Dioleoyl stearoyl glycerol (OOS) was found in small amounts (5.2 g kg?1). All TAGs were identified via sodium adduct molecular ions [M + Na]+, where M is the TAG in question. Tandem mass analysis provided a very useful fragmentation pattern showing both sodium adduct diacylglycerol ions and diacylglycerol ions with the neutral loss of fatty acid residues. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号