首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H.R. Shetty  T.H. Kosel  N.F. Fiore 《Wear》1983,84(3):327-343
Single-point scratch tests were used to investigate material removal mechanisms in two cobalt-base powder metallurgy alloys 6 and 19. Each alloy was produced with fine, medium and coarse chromium-rich M7C3 carbides in a cobalt-rich f.c.c. matrix phase. In a separate study, the low stress abrasion resistance was found to increase with carbide size. The present scratch test study was designed to simulate low stress abrasion conditions by using single quartz abrasive particles as scratch tools, and the results are compared with those from scratches made using regularly shaped diamond tools.Single- and multiple-pass scratches were made with several different loads using Vickers diamond pyramids and single quartz abrasive particles on metallographically prepared surfaces. Single-pass scratches were also made on preworn surfaces by using a Vickers diamond.Single-pass diamond scratches exhibited ploughing and extensive coarse slip bands in the matrix phase of metallographic specimens. Evidence of carbide deformation and of slip band cracking of the matrix material was observed also. Coarse slip bands were not observed on preworn surfaces. On both polished and preworn surfaces, thin layers of the matrix phase were often smeared over the carbides, and coarse carbides were extensively cracked. Multiple-pass diamond scratches on metallographic specimens exhibited thin detached layers of matrix material in the scratch groove and tongue-like extruded lips of material stretching away from the ridge. Particles of similar size and shape were found on the diamond pyramid.Scratch tests with quartz particles exhibited slip band cracking, smeared matrix material over the carbides and cracking and pulling out of carbides similar to observations with diamond tools. However, extensive ploughing and shear lip formation were not observed in quartz scratches, and wear debris particles in the scratch and on the tool were rounded and very much smaller than those produced by multiple-pass diamond scratches. Wear debris in multiple-pass quartz scratches were observed to pile up at the leading edges of the carbides, which protruded from the surface because of preferential wear of the matrix phase, as observed in low stress quartz abrasion.With both quartz and diamond tools, the material with the finest carbides (alloy 19A) exhibited large pits where cracks had traveled along the carbide-matrix interface and between carbides. Very little evidence of pulling out of carbides in the fine carbide materials was found.  相似文献   

2.
V.M. Desai  C.M. Rao  T.H. Kosel  N.F. Fiore 《Wear》1984,94(1):89-101
A study of the effect of carbide size on the abrasion resistance of two cobalt-base powder metallurgy alloys, alloys 6 and 19, was conducted using low stress abrasion with a relatively hard abrasive, A12O3. Specimens of each alloy were produced with different carbide sizes but with a constant carbide volume fraction. The wear test results show a monotonie decrease in wear rate with increasing carbide size.Scanning electron microscopy of the worn surfaces and of wear debris particles shows that the primary material removal mechanism is micromachining. Small carbides provide little resistance to micromachining because of the fact that many of them are contained entirely in the volume of micromachining chips. The large carbides must be directly cut by the abrasive particles. Other less frequently observed material removal mechanisms included direct carbide pull-out and the formation of large pits in fine carbide specimens. These processes are considered secondary in the present work, but they may have greater importance in wear by relatively soft abrasives which do not cut chips from the carbide phase of these alloys. Some indication of this is provided by limited studies using a relatively soft abrasive, rounded quartz.  相似文献   

3.
WEAR PERFORMANCE OF MULTILAYER-COATED CARBIDE TOOLS   总被引:1,自引:0,他引:1  
Three multilayer-coated carbides [two trigon-shaped inserts: Ti(C,N)/TiC/Al2O3 (T1), Ti(C,N)/ Al2O3/TiN (T2) and one 80°-rhomboid shaped insert: TiC/Al2O3/TiN (T3)] were used to machine a martensitic stainless steel at various combinations of cutting speed and feed rate without coolant to assess their wear performance. Significant nose wear and chipping/fracture of the cutting edge were the predominant failure modes affecting tool performance at higher speed conditions. Plucking of tool materials was the main rake face wear phenomenon observed on T1 grade insert with alumina as the top-layer coating when machining at the lower speed conditions. Attrition and plastic flow were the main wear mechanisms observed on the ceramic coating layers, with dissolution-diffusion being the probable wear mechanism of the tool grades where tungsten carbide substrate had direct contact with the flowing chip. The fitted statistical wear models revealed T3 grade insert with 80°-rhomboid shape as having the highest speed-feed capability, resulting in the highest material removal rate relative to T1 and T2 grade inserts with trigon shapes.  相似文献   

4.
P. Harlin  M. Olsson 《Wear》2009,267(9-10):1482-1489
The abrasive wear resistance of starch consolidated (SC) and super solidus liquid phase sintered (SLPS) M3/2 high speed steel (HSS) samples have been evaluated by a two-body micro-abrasion test (low stress abrasion), using 6 μm diamond abrasive particles, and a three-body abrasion test (high stress abrasion), using significantly larger abrasive particles of blast furnace slag (600 HV) and silicon carbide (2400 HV), respectively. In the tests a commercial powder metallurgical (PM) HSS was used as a reference material.The results show that the microstructure of the SC and SLPS HSS samples is strongly dependent on the sintering temperature used. With increasing temperature the microstructure ranges from a porous (5% porosity) relatively fine grained low temperature sintered microstructure to a fully dense relatively coarse grained high temperature sintered microstructure with eutectic carbides/carbide networks. However, despite the pronounced microstructural differences displayed by the as-sintered HSS microstructures these show a relatively high abrasive wear resistance, comparable with that of a HIPed HSS reference, both under low and high stress abrasion contact conditions. The characteristic features of the low and high temperature sintered microstructures, i.e. the pores and coarse eutectic carbides/carbide networks, only show a limited impact on the wear rate and the wear mode (dominant wear mechanism). The results obtained imply that near net shaped components manufactured by starch consolidation and super solidus liquid phase sintering might be of interest in tribological applications.  相似文献   

5.
Grooving wear of single-crystal tungsten carbide   总被引:1,自引:0,他引:1  
H. Engqvist  S. Ederyd  N. Axn  S. Hogmark 《Wear》1999,230(2):591-174
The anisotropic nature of tungsten carbide (WC) single crystals has been evaluated in single-tip scratch testing and in multiple-tip abrasion. The single-tip grooves were made with a Vickers diamond indenter and the abrasion tests were performed with diamond and silica grits. All tests were performed on both the prism and basal planes of the WC crystals. A polycrystalline binderless carbide (Bl) was also evaluated. Optical surface profilometry was used to estimate the amounts of displaced, removed and ridge-formatted material in the scratch tests and the wear volumes in the abrasion tests. The scratches and wear scars were studied with scanning electron-, atomic force- and light optical microscopy (SEM, AFM, LOM). In situ studies of the scratch process were also performed. Wear debris were analysed with transmission electron microscopy (TEM). The results show that there are differences in both the amount of wear and the wear mechanisms between different crystallographic directions of WC. Depending on the direction of the slip planes in relation to the groove direction, the wear mechanisms change from ductile (grooves parallel to the slip planes) to brittle (grooves perpendicular to the slip planes). It is also shown that WC tends to wear by a formation of angular rod-shaped wear debris with the slip planes as the preferred surface planes.  相似文献   

6.
Engqvist  H.  Axén  N.  Hogmark  S. 《Tribology Letters》1998,4(3-4):251-258
A binderless cemented carbide has been evaluated in abrasion and erosion tests. The binderless carbide was compared with: SiC, Al2O3 and two conventional cemented carbides with 6% Co and different WC grain sizes (1 and 7 μm). In the abrasion tests, the materials were ground with silica, silicon carbide and diamond particles in the size range of 5–15 μm. The erosion tests were performed with 80, 200 and 600 μm silicon carbide erodents. The angle of impingement was 45° and the erodent velocity 70 m/s. In all tests, the conventional cemented carbides showed the highest, the binderless cemented carbide an intermediate and the ceramics the lowest wear resistance. Scanning electron and atomic force microscopy of the abraded surfaces revealed that the binderless cemented carbide was worn by a preferential removal of TiC grains. In erosion, the wear mechanism was largely plastic for the cemented carbides, whereas the ceramics were worn by micro-fracture. The SEM analysis also showed an impact scaling effect for the cemented carbides in erosion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
《Wear》1987,117(3):289-308
The abrasive wear behaviour of directionally solidified Ni-Cr-C alloys was investigated using a pin-type test. M7C3 carbide volume fractions (CVF) were varied from 0 to 40%. Two sets of alloys with different carbide and dendrite spacings were abraded with bonded SiC and corundum particles, varying the grit size and applied load. M7C3 carbides greatly improved the abrasive wear resistance against fine-grained SiC particles within the whole range of compositions. By refining the primary carbide structure in hypereutectic alloys, the wear resistance against coarse-grained SiC particles was also improved with increasing CVF although SiC is known to be much harder than M7C3. Coarse SiC abrasive particles had a detrimental effect on the wear resistance of all hypoeutectic alloys and, even more, of hypereutectic alloys if the primary carbides were coarse. In testing with corundum, the wear resistance always improved with increasing carbide volume fraction.Wear damage was arranged in three classes. First, SiC and corundum abrasives were partially broken from the substrate at the entrance edge of the specimen. The edges of SiC grains stayed sharp during the wear process whereas the edges of corundum particles were rounded or the corundum was crushed by M7C3 carbides. Secondly, damage in the wear surface occurred by fracturing of the edges of carbides facing the wear surface. In addition, SiC abrasives were able to groove carbides. Thirdly, coarse SiC grains transmitted shear stresses causing severe subsurface damage leading to microstructure disintegration and spalling of primary carbides. SiC transmitted larger shear stresses than corundum because the latter was separated by a thin layer of wear debris from the unworn material.The microstructural parameters influencing wear were CVF, size, morphology and distribution of carbides. Optimum wear resistance depended on the abrasive mineral. Alloys with high CVF and coarse primary carbides were best suited for wear with corundum whereas fine primary carbides were required to resist wear by SiC.  相似文献   

8.
Fretting wear in seawater   总被引:1,自引:0,他引:1  
J. Sato  M. Shima  M. Takeuchi 《Wear》1986,110(3-4):227-238
Fretting tests of bearing steel (SUJ-2) and ceramics (Al2O3 and Si3N4) were carried out in the following environments: air, deionized water, 3.07% NaCl solution, synthetic seawater and natural seawater. Also, investigations to determine the optimum fretting wear resistant material for ships, marine equipment and offshore structures were conducted. The results showed that (1) the corrosion products formed in seawater behaved as a lubricant and reduced the fretting damage at large amplitudes, but the fretting damage was not greatly influenced by the different environments at very small amplitudes (such as 14 μm), (2) instead of natural seawater, synthetic seawater was adequate for the investigations of fretting wear, but 3.07% NaCl solution was found not to be and (3) the ceramic Al2O3 was a potentially useful material against fretting wear under light loads in seawater.  相似文献   

9.
For the combinations of an Si3N4 pin and five kinds of ceramic disk (SiC, Si3N4, Al2O3, ZrO2, TiC), a friction and wear test was carried out in ethanol and in ethanol containing iron particles (1 wt.%, average diameter d = 200 nm, D = 12 μm under cohered condition) under a load in the range 5.88–11.50 N, at a sliding velocity of 0.138–0.196 m s−1. A topographical analysis was also performed on the microasperities of the wear surfaces to estimate the behavior of the iron particles, and the degree of surface damage. As a result, the following facts were found. (1) The addition of iron particles in ethanol decreased both the wear rates of SiC and TiC disks and the mating pins, and also decreased the wear rate of the Al2O3 disk but increased that of the mating pin. The addition increased the wear rates of both ZrO2 and Si3N4 disks and the mating pins. (2) The average coefficients of friction with the addition of iron particles were greater than those without iron particles. (3) The wear rates of pin and disk depended on the topographies of wear surfaces and the wear index Γ.  相似文献   

10.
M. G. Gee   《Wear》2001,250(1-12):264-281
Abrasion is caused by the repeated scratching of materials by individual particles in an abrasive, often under fairly light loads. This process has been simulated by carrying out scratch tests on a range of ceramics and hard metals. An array of different scratches was carried out on each sample with a different number of repeats along the same track for each scratch. The magnitude of the damage was measured by the width of the scratches. The frictional force between the indenter and test sample was also measured.

Although the width of single pass scratches in some of the harder materials was smaller than in softer materials, in multiple pass scratches, the final widths of scratches in some of the harder materials were greater than in the softer materials. This was due to differences in the contribution of fracture in the development of damage in multiple pass scratches.

It was found that fracture was a predominant form of damage to both hard metals and ceramics. In the case of the hard metals the fracture was on a fine scale, but with the ceramics fracture occurred on a larger scale, often removing large fragments of material.

These results, and the results of the friction measurements are correlated with the results of a microstructural examination of the mechanisms that occurred. They are also compared with a microstructural assessment of the early stages of wear in the abrasion of these materials.  相似文献   


11.
J. Takadoum 《Wear》1993,170(2):285-290
Friction and wear behaviour of alumina sliding on various materials (nickel, copper, titanium, aluminium, alumina) were investigated experimentally. Pin-on-disc tests were conducted in air at various relative humidity levels (RHL). The results show that the influence of humidity depends on the material of the couples. Tribological behaviour of alumina sliding on very reactive metals such as titanium and aluminium is not influenced by RHL. In contrast, the friction coefficient and wear mechanism of nickel and copper are strongly affected by adsorbed films of water vapour. Nickel implanted with boron was also studied. The friction and wear of implanted surfaces are drastically reduced due to a lowering of the nickel surface reactivity. The tribological behaviour of the Al2O3/Al2O3 couple is also sensitive to RHL. The variation of friction coefficient and wear of this system are discussed in terms of tribochemical reactions and crack propagation.  相似文献   

12.
Abstract

Laser cladded coatings have been used extensively to extend the service life of components exposed to severe abrasive wear. One of the main wear resistant materials used in laser cladding is ceramic–metallic composite. Despite extensive use of this class of material, there is very limited knowledge regarding mechanical degradation mechanisms, such as cracking and plastic deformation, under different wear conditions. In this investigation a mixture of nickel alloy and tungsten carbide powders were used to deposit the coating. Two types of tungsten carbide powders with spherical and angular carbides were employed. The microstructures of the coatings were analysed thoroughly by optical microscopy, electron probe microanalysis and wavelength dispersive spectrometry. Failure and cracking mechanisms of laser cladded coatings under normal and tangential loading were systematically investigated using scratch testing. In the nickel alloy matrix, fine mixed secondary carbides were formed due to partial dissolution and formation of the secondary tungsten carbide during laser cladding. These secondary carbides were rich in chromium, tungsten and nickel and had a blocky and/or bar-like shape. Failure mechanisms associated with scratch testing were dependent on the microstructure and carbide morphology, applied stress and location of carbide particles with regard to the scratch groove. Owing to the high binder mean free path between the carbide particles, plastic deformation of the binder was the dominant failure mechanism. Additionally, partial or whole fragmentation of carbides, carbide/binder interface cracking and limited binder fracture were observed.  相似文献   

13.
Three different white cast irons with compositions of Fe–3%C–10%Cr–5%Mo–5%W (alloy no. 1), Fe–3%C–10%V–5%Mo–5%W (alloy no. 2) and Fe–3.5%C–17%Cr–3%V (alloy no. 3) were prepared in order to study their solidification and abrasion wear behaviors. Melts were super-heated to 1873 K in a high frequency induction furnace, and poured at 1823 K into Y-block pepset molds. The solidification sequence of these alloys was investigated. The solidification structures of the specimens were found to consist of austenite dendrite (γ); (γ+M7C3) eutectic and (γ+M6C) eutectic in the alloy no. 1; proeutectic MC; austenite dendrite (γ); (γ+MC) eutectic and (γ+M2C) eutectic in the alloy no. 2, and proeutectic M7C3 and (γ+M7C3) eutectic in the alloy no. 3, respectively.

A scratching type abrasion test was carried out in the states of as-cast (AS), homogenized (AH), air-hardened (AHF) and tempered (AHFT) using the abrasive paper with 120 mesh SiC and 10 N application load. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the specimen no. 2 and highest in the specimen no. 1 except for the as-cast and homogenized states in which the specimen no. 3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the specimen no. 2 could be attributed to the fact that it contained proeutectic MC carbide, eutectic MC and M2C carbides having extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed by heat-treatments to martensite, tempered martensite and austenite. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance of white cast iron.  相似文献   


14.
H.E. Hintermann 《Wear》1984,100(1-3):381-397
Chemically vapour-deposited and physically vapour-deposited coatings of hard and wear-resistant materials such as TiC, TiN, Ti(C, N), Cr7C3, Al2O3, SiO2 and TiO2 as well as other carbides, nitrides, borides, oxides and combinations thereof are increasingly used in industrial applications to protect metal, ceramic and in certain cases polymer parts against mechanical and chemical attack, sometimes with a decorative purpose also. Some relevant examples of coated products are cemented carbide throwaway cutting tips (TiC, TiN, Ti(C, N), Al2O3 etc.), high speed steel drills and milling cutters (TiN), hobs, deep drawing tools, ball-bearing elements, gears, machine elements, electrical contacts, body implants, surgical instruments and tools, cutlery, fuel pins and armatures especially for helium- and sodium-cooled nuclear reactors, low Z sputter-resistant protective coatings on parts (limiters, antennae etc.) and walls of the torus in fusion reactors (tokamak) and gold- or silver- or black-coloured watch cases and jewelry pieces. The life of such coated tools or machine elements as well as their performance are considerably increased, provided that the adhesive strength of the coating to the base material and the intrinsic cohesion of the coating are sufficient. Bad adhesion leads to flaking (adhesive failure) while poor cohesion causes chipping (cohesive failure).  相似文献   

15.
Kenneth G. Budinski 《Wear》2001,250(1-12):376-383
The tools used to perforate a particular photographic film started to wear at an unacceptable rate when the film base was changed from cellulose triacetate to polyester (PET). A laboratory investigation was initiated to screen candidate tool materials and identify ones with potential for 10 times life improvement over cemented carbide (WC/10% Co).

The screening tests started with abrasion and corrosion tests on various grades of cemented carbide, cermets and selected ceramics. Concurrent production trials indicated that the laboratory corrosion tests were not correlating with production results. To address this problem, a “nibbler” test was developed which simulates perforating and material removal on a punch after 106 perforations (nibbles) became the screening test metric.

It was determined that abrasion tests do not accurately predict tool material behavior when chemicals are present on or in the materials being perforated. Static corrosion tests do not predict tool response under production conditions. The rubbing of the film on the tool surfaces removes protective films and there can be a significant corrosion component in tool erosion. The nibbler simulates real tool conditions because erosion is produced by actual cutting of coated webs. Nibbler tests in this study indicated that alumina/zirconia resisted film erosion better than cemented carbide, even cemented carbide with PVD coatings. The nibbler tests also indicated that leaving recast layers from electrical discharge machining on cemented carbide greatly increases erosion rates. It should be removed.

Production tests conducted since completion of these laboratory studies suggests that nibbler results correlate with production results. Coated cemented carbides are providing 3 times the service life of uncoated cemented carbides as predicted by the nibbler test.  相似文献   


16.
The surface degradation of tungsten carbide based thermal spray coatings when exposed to fine-particle slurry abrasion has been investigated. The coatings that were studied contain binder-phase constituents consisting of either nickel or cobalt. The coatings were deposited onto test cylinders using a detonation gun device. After applying approximately 0.15 mm thickness of thermal spray coating, the coatings were ground, then diamond polished to achieve surface roughnesses of 0.03 μm Ra or less. The coatings were exposed to a three-body abrasive wear test involving zirconia particles (less than 3 μm diameter) in a water-based slurry. Results show that preferential binder wear plays a significant role in the wear of these tungsten carbide coatings by fine abrasives. In the comparison presented here, the coating containing nickel-based binder with a dense packing of primary carbides was superior in terms of retaining its surface finish upon exposure to abrasion. The coating containing a cobalt binder showed severe surface degradation.  相似文献   

17.
The tribological properties of four different materials are investigated, tetragonal zirconia (Y-ZTP), Al2O3 dispersed in Y-TZP (ADZ), ZrO2 dispersed in Al2O3 (ZTA) and Al2O3 (with 300 ppm MgO). These materials are used as a cylinder sliding against a plate of Y-TZP (TZ-3Y)). Compared to Y-TZP, the wear resistance of ADZ composites is increased by a factor of 4–10. At a contact pressure of 230 MPa, a wear transition for Y-TZP is observed from plastic deformation to microchipping and microfracture due to the high interfacial temperature (450°C–550°C) generated by frictional heating. Because of the higher elastic modulus, hardness and fracture toughness at high temperature, ADZ composites show better wear resistance and a higher transition contact pressure (over 400 MPa) under the present conditions. For Al2O3, the transition from mild to severe wear occurs when the contact pressure is changed from 250 to 400 MPa. For ZTA ceramics, the wear behaviour does not change because of the presence of a compressive layer due to the zirconia phase transformation during sliding.

In water the wear resistance for ADZ and ZY5 is almost two orders of magnitude higher than the results under dry conditions. Reduction of the interfacial temperature by using water and the formation of a hydroxide layer at the contact surface by the tribochemical reaction of water with the ceramic, as observed by XPS, gives a positive effect on wear resistance.  相似文献   


18.
C. Allen  M. Sheen  J. Williams  V. A. Pugsley 《Wear》2001,250(1-12):604-610
The wear performance of ultrafine-grained tungsten carbide–cobalt (WC–Co) hard metals during three-body abrasion and particle erosion has been evaluated and compared to that of similar conventional coarser grained hard metals. The tungsten carbide grain size varied between 0.5 and 3 μm with cobalt contents ranging from 6 to 15%. Silica particles were used in both forms of testing. Erosion was carried out at 60 ms−1 at an impact angle of 75° and abrasion at a velocity of 0.5 ms−1 and a load of 50 N.

The wear resistance of the ultrafine grades was found to be at least double that of the closest conventional fine grained hard metals. These increases in wear performance are considerably higher than any corresponding increase in hardness which is, at most, 25% and is not achieved at the expense of fracture toughness which is maintained at a similar level to that of conventional fine grained hard metals. The increase in wear resistance coincides with a change in the mechanism of material removal. Sub-micron materials experience ductile deformation and bulk removal of material whilst coarser grades display more localised response with extensive fragmentation of the WC grains.  相似文献   


19.
The sliding wear behaviour of high-chromium white cast iron (16.8% Cr) has been examined as a function of silicon and Mischmetal alloy additions (1, 2, 3 and 5% Si and 0.1 and 0.3% Mischmetal). Such additions are known to modify the structure, but there is considerable controversy as to the exact effect. Silicon was found to refine the dendritic structure and increased the eutectic carbide volume fraction. However, for contents above 3%, transformation of the austenitic matrix to pearlite occurred in preference to martensite. Mischmetal additions reduced the austenite dendrite arm spacing, but did not have a significant effect on the carbide structure. The wear behaviour was investigated for each alloy in the as-cast (austenitic matrix) and hardened (martensitic) conditions using a block on ring configuration in pure sliding in the load range 42–238 N for a distance of 70 km against a hardened M2 steel counterface. For low loads (42 and 91 N), all the alloys showed a similar wear rate (3×10−4 to 4×10−4 mm3/m), associated with the formation of a thin (3 μm) oxide film of Fe2O3, the formation of very fine debris and a small depth of deformation below the worn surface (7 μm). For higher loads, wear was a strong function of microstructure, and was associated with a thicker film of the oxides Fe2O3 and Fe3O4 and greater depths of deformation. The iron with 2% silicon exhibited the best performance with a wear rate of 7×10−4 mm3/m and this was attributed to its finer structure and the formation of a thicker oxide film. In contrast, the iron with 5% silicon exhibited the worst performance, with a wear rate of 14×10−4 mm3/m, attributed to the pearlitic matrix. A linear relationship was observed between the depth of carbide fracture and the wear rate. The relationship between microstructure and wear mechanism is discussed.  相似文献   

20.
V. Krishna Kumar  S. Swarnamani 《Wear》1997,210(1-2):255-262
Dry frictional contact between two surfaces, one made of plasma sprayed ceramic coatings of Al2O3 and Al2O3---TiO2 combination and the other made of steel, is analyzed. The experiments were conducted using a pin-on-disc set-up in the load range of 5–35 N and for sliding distances up to 14 km. The interactions between friction, wear and vibrations due to influence of normal load, sliding speed and system dynamics are investigated in the present paper. Two vibration parameters of pin in the load direction (vertical) are monitored, namely the r.m.s. acceleration and the kurtosis, which seem to be influenced considerably by the wear process and indicate correlation with wear mechanisms taking place such as stick-slip and grain pull-out, as evidenced by scanning electron microscopy of worn surfaces. The study shows that a range of frequency is to be utilized for vibration monitoring to include natural frequencis of the system consisting of pin in contact with disc. This could be estimated by a standard impulse hammer test. The pin acceleration decreases with increase in load and sliding distance, but with respect to sliding speed, the vibration level intially decreases but increases beyond the sliding speed of 1.5 m s−1. Among the three ceramic coatings, TiO2 is found to be most wear resistant, exhibiting the lowest friction coefficient and a low vibration level. Variation in kurtosis with run-in wear indicates smoothing of Al2O3 due to grain pull out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号