首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.  相似文献   

2.
In vivo and in vitro, proliferating motile myoblasts form aligned groups of cells, with a characteristic bipolar morphology, subsequently become post-mitotic, begin to express skeletal myosin and fuse. We were interested in whether members of the myosin superfamily were involved in myogenesis. We found that the myoblasts expressed multiple myosin isoforms, from at least five different classes of the myosin superfamily (classes I, II, V, VII and IX), using RT-PCR and degenerate primers to conserved regions of myosin. All of these myosin isoforms were expressed most highly in myoblasts and their expression decreased as they differentiated into mature myotubes, by RNAse protection assays, and Western analysis. However, only myosin I alpha, non-muscle myosin IIA and IIB together with actin relocalize in response to the differentiative state of the cell. In single cells, myosin I alpha was found at the leading edge, in rear microspikes and had a punctate cytoplasmic staining, and non-muscle myosin was associated with actin bundles as previously described for fibroblasts. In aligned groups of cells, all these proteins were found at the plasma membrane. Co-staining for skeletal myosin II, and myosin I alpha showed that myosin I alpha also appeared to be expressed at higher levels in post-mitotic myoblasts that had begun to express skeletal myosin prior to fusion. In early myotubes, actin and non-muscle myosin IIA and IIB remained localized at the membrane. All of the other myosin isoforms we looked at, myosin V, myosin IX and a second isoform of myosin I (mouse homologue to myr2) showed a punctate cytoplasmic staining which did not change as the myoblasts differentiated. In conclusion, although we found that myoblasts express many different isoforms of the myosin superfamily, only myosin I alpha, non-muscle myosin IIA and IIB appear to play any direct role in myogenesis.  相似文献   

3.
Calponin is a thin filament-associated protein in smooth muscle that has been shown to bind actin, tropomyosin and calmodulin, and has been implicated to play a role in regulation of smooth muscle contractility. Using a centrifugation assay we found that calponin interacts with unphosphorylated filamentous smooth muscle myosin. We found that this calponin-myosin interaction is reversed by Ca(2+)-CaM, and depends on ionic strength. At 50 mM NaCl the binding constant and the stoichiometry of this interaction were estimated to be 2 x 10(6) M-1, and 1.2-2.4 calponin per myosin, respectively. We suggest that the calponin-myosin interaction could be involved in regulation of smooth muscle contractility by anchoring myosin to actin.  相似文献   

4.
In order to elucidate the effects of the different basic fibroblast growth factor (bFGF) isoforms on vascular smooth muscle, we examined aorta-derived vascular smooth muscle cells from transgenic mice expressing the human isoforms of bFGF. Four cell lines were examined from mice in which transgene expression was driven by the ubiquitous phosphoglycerate kinase promoter. Overexpression and cellular localization was confirmed by Western blot analysis in vascular smooth muscle cells from mice expressing: all four human bFGF isoforms (24, 22, 21, and 18 kDa); all three nuclear targeted isoforms (24, 22, and 21 kDa); only the 24 kDa isoform; and the only secreted/non-nuclear targeted isoform, 18 kDa. All lines showed approximate four-fold increases in bFGF expression, nuclear localization of all nuclear targeted bFGF isoforms, and cytosolic localization of only the 18 kDa bFGF. Measurement of [3H]thymidine incorporation into quiescent cells stimulated with increasing concentrations of serum, showed increased DNA synthesis in cell lines expressing any bFGF isoform when compared to non-transgenic control cells, and a further increase in DNA synthesis in cells expressing the nuclear targeted isoforms (24, 22, and 21 kDa) over the 18 kDa bFGF expressing cell line at any concentration of serum. All cells showed equal label incorporation when stimulated with 10 ng/ml of platelet-derived growth factor confirming an equal potential for DNA synthesis. Neutralizing the bFGF antibody markedly decreased serum-stimulated DNA synthesis, but only in the cell lines overexpressing the secreted/non-nuclear targeted 18 kDa isoform. These results suggest amplification of DNA synthesis through synergistic intracrine and autocrine effects of the nuclear targeted and non-nuclear targeted bFGF isoforms in vascular smooth muscle cells.  相似文献   

5.
We investigated in vivo expression of myosin heavy chain (MHC) isoforms, 17 kDa myosin light chain (MLC17), and phosphorylation of the 20 kDa MLC (MLC20) as well as mechanical performance of chemically skinned fibers of normal and hypertrophied smooth muscle (SM) of human myometrium. According to their immunological reactivity, we identified three MHC isoenzymes in the human myometrium: two SM-MHC (SM1 with 204 kDa and SM2 with 200 kDa), and one non-muscle specific MHC (NM with 196 kDa). No cross-reactivity was detected with an antibody raised against a peptide corresponding to a seven amino acid insert at the 25K/50K junction of the myosin head (a-25K/50K) in both normal and hypertrophied myometrium. In contrast, SM-MHC of human myomatous tissue strongly reacted with a-25K/50K. Expression of SM1/SM2/NM (%) in normal myometrium was 31.7/34.7/33.6 and 35.1/40.9/24 in hypertrophied myometrium. The increased SM2 and decreased NM expression in the hypertrophied state was statistically significant (P < 0.05). MHC isoform distribution in myomatous tissue was similar to normal myometrium (36.3/35.3/29.4). In vivo expression of MLC17a increased from 25.5% in normal to 44.2% in hypertrophied (P < 0.001) myometrium. Phosphorylation levels of MLC20 upon maximal Ca(2+)-calmodulin activation of skinned myometrial fibers were the same in normal and hypertrophied myometrial fibers. Maximal force of isometric contraction of skinned fibers (pCa 4.5, slack-length) was 2.85 mN/mm2 and 5.6 mN/mm2 in the normal and hypertrophied state, respectively (P < 0.001). Apparent maximal shortening velocity (Vmax(appt), extrapolated from the force-velocity relation) of myometrium rose from 0.13 muscle length s-1 (ML/s) in normal to 0.24 ML/s in hypertrophied fibers (P < 0.001).  相似文献   

6.
Caldesmon is an actin/calmodulin/tropomyosin protein located in the thin filaments of smooth muscle cells and microfilaments of nonmuscle cells. Two isoforms of caldesmon, h- and l-types, shown to exist in vertebrate smooth and nonmuscle cells respectively, are produced by alternative splicing of the caldesmon mRNA encoded by a single gene. To study the expression of smooth muscle specific h-caldesmon during the differentiation of mesenchymal cells into smooth muscle cells, soluble protein and total RNA from the gizzard primordium in the gut region of 5-day and gizzards of 7-, 9-, 13-, 17- and 21-day embryos and 2-days post-hatch chicks were extracted and analyzed for caldesmon expression at both protein and mRNA levels. Western blot analysis of proteins and immunofluorescence microscopy of tissue section were carried out using an antibody specific for h-caldesmon. Total RNA was analyzed by Northern blotting using a caldesmon cDNA probe, and h- and l-caldesmon cDNAs were identified due to the difference in their molecular sizes (4.8 and 4.1 kb respectively). The mRNA was also analyzed by reverse transcribed-polymerase chain reaction (RT-PCR) and Southern blot analysis. Our results show that the I-caldesmon mRNA was expressed at higher levels in the gizzard primordium during the early stages of development, and decreased gradually during growth. The h-caldesmon protein and mRNA, not expressed at day 5, is minimally expressed at day 7 and is fully turned on by day 9. Additionally, sequence analyses of the RT-PCR products of I-caldesmon showed that it lacked the spacer region, as predicted. RT-PCR analysis of total RNA gave two h-caldesmon fragments. These two fragments were identified as two different isoforms of h-caldesmon since they both contained the spacer region. They also showed homology in the region of exon 4 had differences in the region of exon 3b.  相似文献   

7.
Smooth muscle contraction is regulated primarily by the reversible phosphorylation of myosin triggered by an increase in sarcoplasmic free Ca2+ concentration ([Ca2+]i). Contraction can, however, be modulated by other signal transduction pathways, one of which involves the thin filament-associated protein calponin. The h1 (basic) isoform of calponin binds to actin with high affinity and is expressed specifically in smooth muscle at a molar ratio to actin of 1:7. Calponin inhibits (i) the actin-activated MgATPase activity of smooth muscle myosin (the cross-bridge cycling rate) via its interaction with actin, (ii) the movement of actin filaments over immobilized myosin in the in vitro motility assay, and (iii) force development or shortening velocity in permeabilized smooth muscle strips and single cells. These inhibitory effects of calponin can be alleviated by protein kinase C (PKC)-catalysed phosphorylation and restored following dephosphorylation by a type 2A phosphatase. Three physiological roles of calponin can be considered based on its in vitro functional properties: (i) maintenance of relaxation at resting [Ca2+]i, (ii) energy conservation during prolonged contractions, and (iii) Ca(2+)-independent contraction mediated by phosphorylation of calponin by PKC epsilon, a Ca(2+)-independent isoenzyme of PKC.  相似文献   

8.
Smooth muscle myosin II contains two 17-kDa essential light chain isoforms (LC17gi and LC17nm) of which the relative contents differ among myosins. To understand the roles of LC17 isoforms in the functions of myosin, we performed an immunofluorescence microscopic examination of their localization in primary cultured cells isolated from rat aortic smooth muscle. To identify the isoforms, rabbit polyclonal antibodies were prepared against C-terminal nonapeptides corresponding to either LC17gi or LC17nm from porcine aortic smooth muscle myosin. These isoforms differ in only 5 amino acid residues within the C-terminal 9 residues. These antibodies specifically recognize each LC17 isoform on urea-PAGE of total rat aortic cell lysates. Immediately after plating, the smooth muscle cells stained heterogeneously with each antibody, indicating differing contents of LC17 isoforms among cells. On double staining 1-2 d cultures with both antibodies, LC17nm was detected diffusely throughout the cytoplasm, whereas LC17gi was concentrated in specific regions such as the cell periphery and the base of cytoplasmic processes. These results support the suggestion that myosin containing LC17gi is essential for force-generation by aortic smooth muscle and that myosin containing LC17nm may play an important role in maintaining smooth muscle tension.  相似文献   

9.
The smooth muscle tropomyosin isoforms beta and gamma were isolated in pure form and labeled with N-(1-pyrenyl)iodoacetamide (PIA) on the cysteine residues at either the N- or the C-terminal region (Cys-36 and Cys-190 of beta- and gamma-isoforms, respectively). The effect of caldesmon (CaD) on local conformational changes in different regions of the tropomyosin molecule was determined on the basis of changes in the excimer fluorescence (excited dimer of pyrene) formed in homodimers of tropomyosin isoforms. In the absence of actin, excimer fluorescence from the pyrene at Cys-190 of gamma-tropomyosin homodimer decreased in a simple manner on the addition of CaD, whereas the excimer from the Cys-36 of beta-tropomyosin homodimer exhibited a biphasic change, suggesting that additional weak binding sites exist near Cys-36. In the presence of actin, CaD-induced changes in the excimer fluorescence of pyrene-tropomyosin were observed only with Cys-36, and this change was associated with an inhibition of actin-activated myosin ATPase. A competition study with unlabeled tropomyosin isoforms indicated that the different excimer changes exhibited by beta- and gamma-tropomyosin in the presence of CaD were due to conformational changes in different regions of the tropomyosin molecule and not to differences in their affinities for CaD. Experiments with recombinant CaD mutants derived using the baculovirus expression system showed that the inhibition of tropomyosin potentiation of actomyosin ATPase by CaD requires the regions between residues 728-756 and 718-727 on the CaD molecule, although the latter region was sufficient for direct interaction with tropomyosin.  相似文献   

10.
The skeletal and cardiac isoforms of the ryanodine receptor Ca2+ channel (RyRC) constitute the Ca2+ release pathway in sarcoplasmic reticulum of skeletal and cardiac muscles, respectively. A direct mechanical and a Ca(2+)-triggered mechanism (Ca(2+)-induced Ca2+ release) have been respectively proposed to explain the in situ activation of Ca2+ release in skeletal and cardiac muscle. In non-muscle cells, however, where the RyRC also participates in Ca2+ signalling, the mechanism of RyRC activation is unknown. Cyclic adenosine 5'-diphosphoribose (cADPR), which is present in many mammalian tissues, has been reported to induce Ca2+ release from ryanodine-sensitive intracellular Ca2+ stores in sea urchin eggs. Here we provide evidence that cADPR directly activates the cardiac but not the skeletal isoform of the RyRC. This, together with results on sea urchin eggs, suggests that cADPR is an endogenous activator of the non-skeletal type of RyRC and may thus have a role similar to inositol 1,4,5-trisphosphate in Ca2+ signalling.  相似文献   

11.
The major part of research dealing with the biophysical and biochemical properties of airway smooth muscle is based on the assumption that the cells constituting the tissue are homogenous. For striated muscle this has been shown untenable. In recent years almost every property of vascular smooth muscle has been also demonstrated to be heterogeneous. This realization has been late in arriving on the airway smooth muscle research scene. Our own studies have shown that mechanical properties are, in quantitative terms, heterogeneously distributed down the airways and that contractility, for example, in extrapulmonary and intrapulmonary airways differs markedly. Another indication of heterogeneity is derived from studies of the biochemical properties of airway smooth muscle cells (ASMCs) in culture. Dramatic changes in phenotype expression were found with days in culture. Just after isolation from the tissue, the cells were of contractile type and contained mature isoforms of contractile, regulatory and cytoskeletal proteins. After the fourth day in culture the cellular phenotype changed such that contractile filaments diminished rapidly with smooth muscle isoforms being replaced by non-muscle isoforms. The cell assumed secretory or synthetic properties and commenced proliferating rapidly. It is possible that similar changes in phenotype could occur in vivo in cells undergoing hypertrophy or hyperplasia. Thus, a thickened medial layer of the type seen in the walls of airways from asthmatic airways is not necessarily one endowed with increased contractility and, in fact, the latter may be subnormal. Finally, using the so-called motility assay, we studied the velocity of translation of actin filaments by myosin molecules obtained from antigen-sensitized and control airway smooth muscle. We found no change in maximum velocity of actin translation. This was under conditions where the myosin light chain (MLC) was fully phosphorylated. However, in these tissues we found heterogeneity in myosin light chain kinase (MLCK) content which, we inferred, accounted for the difference in shortening velocity between control and sensitized muscle strips in vitro.  相似文献   

12.
We have isolated a novel, high Mr protein from human retinal pigment epithelial cells and endothelial cells by affinity chromatography on Sepharose 4B. Two polypeptides are present on SDS-gels of the 8 M urea eluent with apparent molecular mass of approximately 210 and 47 kDa. In the absence of dithiothreitol, the two polypeptides migrate as one protein band with an apparent molecular mass of approximately 550 kDa. "Piglet," as this molecule is tentatively named, is present in retinal pigment epithelial and endothelial cells of several species, but could not be detected in the nonepithelial cells we examined. Immunofluorescent localization using an antibody to the 210-kDa polypeptide revealed a filamentous network in the cytoplasm of cultured cells. This antibody was used to identify a cDNA for piglet in a bovine aortic endothelial cell expression library. Sequence data indicate a high degree of identity with non-muscle myosin II heavy chain. We subsequently found that piglet had an actin-activated ATPase activity, colocalized with actin in cells, and reacted on Western blots with a pan-non-muscle myosin II heavy chain antiserum. The protein was also recognized by antibodies specific for myosin heavy chain isoform A, but did not react with anti-isoform B antibodies. Although piglet has several features in common with known forms of non-muscle myosin II, the distinctly unconventional features it displays suggest that it is a novel myosin.  相似文献   

13.
Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160(ROCK)) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 +/- 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.  相似文献   

14.
Tropomyosin is an actin-associated cytoskeletal protein expressed in muscle and non-muscle cells. There are several tropomyosin isoforms, and their cellular expression is known to be associated with transformation events caused by retroviral infection and chemical mutagens. We found that expression of a low-molecular weight tropomyosin isoform, TM5/TM30nm, was higher in a high-metastatic B16 mouse melanoma cell line, B16-F10, than in B16-F1, a low-metastatic mouse melanoma cell line. In order to determine whether this elevated level of TM5/TM30nm plays a role in malignant phenotype, B16-F10 cells were transfected with recombinant DNA containing antisense rat TM5/TM30nm cDNA linked to the human metallothioneinIIa promoter, which is inducible by heavy metals such as zinc and cadmium. When the stably transfected clones were treated with ZnSO4, decreased expression of TM5/TM30nm and reduction in cell motility, which is thought to be an indicator of cellular malignancy were observed. These findings suggest that TM5/TM30nm plays a fundamental role in regulating cell motility, which is essential for metastasis and invasion of tumor cells.  相似文献   

15.
Phosphorylation of myosin light chain kinase by a Ca(2+)-dependent protein kinase increases the concentration of Ca2+/calmodulin required for half-maximal activation. The Ca2+ concentrations required for myosin light chain kinase phosphorylation in permeable smooth muscle are similar to those required for myosin light chain phosphorylation. Both GTP gamma S and carbachol increase the Ca2+ sensitivity of myosin light chain kinase phosphorylation as well as light chain phosphorylation. It is proposed that a similar G-protein mediated mechanism regulates the Ca(2+)-dependent phosphorylation of these two contractile proteins in smooth muscle.  相似文献   

16.
Effect of calponin and 38 kD actin-binding proteolytic fragment of caldesmon on actin structure alterations, initiated by decoration of thin filaments by N-ethylmaleimide-modified skeletal myosin subfragment-1 (NEM-S1) and by phosphorylated smooth heavy meromyosin (pHMM), has been studied by polarized fluorimetry. F-actin of myosin-free ghost fiber was labeled with fluorescent probe fluoroscein-5-maleimide. Both the actin-binding regulatory proteins have been demonstrated to inhibit conformational changes of actin typical for the "strong" binding of myosin head to actin. Tropomyosin weakens the inhibitory effect of calponin and markedly increases the effect of the 38 kD fragment of caldesmon. The results indicate similarity of molecular mechanisms of the regulation of muscle contraction by calponin and the actin-binding fragment of caldesmon. It is proposed that the regulation of smooth muscle contraction by calponin and caldesmon is carried out via the inhibition of the formation of the stage AM in ATP hydrolysis cycle.  相似文献   

17.
18.
In skeletal muscle fibers, the high-capacity medium-affinity Ca(2+)-binding protein calsequestrin functions as the major Ca(2+)-reservoir of the sarcoplasmic reticulum. To determine the oligomeric status of calsequestrin, immunoblotting of microsomal proteins following chemical crosslinking was performed. Diagonal non-reducing/reducing two-dimensional gel electrophoresis was employed to unequivocally differentiate between cross-linked species of 63 kDa calsequestrin and calsequestrin-like proteins of higher relative molecular mass. Since chronic low-frequency stimulation has a profound effect on the expression of many muscle-specific protein isoforms, we investigated normal and conditioned muscle fibers. Calsequestrin was found to exist in a wide range of high-molecular-mass clusters in normal and chronically stimulated skeletal muscle fibers. Hence, oligomerization is an intrinsic property of this important Ca(2+)-binding protein and does not appear to be influenced by the fast-to-slow transformation process. Although fiber-type specific differences exist in the physiology of the skeletal muscle Ca(2+)-regulatory system, oligomerization of calsequestrin seems to be essential for proper functioning.  相似文献   

19.
Despite pronounced differences by which membrane-depolarizing or phospholipase C-activating stimuli initiate contractile responses, a rise in [Ca2+]i is considered the primary mechanism for induction of smooth muscle contractions. Subsequent to the formation of the well-characterized Ca(2+)4-calmodulin complex, interaction with the catalytic subunit of myosin light chain kinase triggers phosphorylation of 20 kDa myosin light chain and activates actin-dependent Mg2+-ATPase activity, which ultimately leads to the development of tension. The present article reviews the fundamental mechanisms leading to an increase in [Ca2+]i and discusses the biochemical processes involved in the transient and sustained phases of contraction. Moreover, the commentary summarizes current knowledge on the modulatory effect of changes in the microviscosity of the plasma membrane on the Ca2+ transient as well as the contractile response of smooth muscle. Evidence has accumulated that these changes in microviscosity alter the activity of membrane-bound enzymes and affect the generation of endogenous mediators responsible for the regulation of cytosolic Ca2+ concentrations and for the [Ca2+]i-sensitivity of myosin light chain phosphorylation.  相似文献   

20.
This review has presented some of the recent data on myosin phosphatase from smooth muscle. Although it is not conclusive, it is likely that most of the myosin phosphatase activity is represented by a holoenzyme composed of three subunits. These are: a catalytic subunit of 38 kDa of the type 1 phosphatase, probably the delta isoform (i.e. PP1c delta); a subunit of about 20 kDa whose function is not established; and a larger subunit that is thought to act as a target subunit. This is termed the myosin phosphatase target subunit, MYPT. Various isoforms of MYPT exist and the relatively minor distinctions are in the C-terminal leucine zipper motifs and/or with inserts in the central region. Many regions of the molecule are highly conserved, including the ankyrin repeats in the N-terminal part of the molecule and the sequence around the phosphorylation site. In addition, these isoforms all contain the four residue PP1c-binding motif (Arg/Lys-Val/Ile-Xaa-Phe). MYPT has been detected in a variety of cells and thus is not unique to smooth muscle. With phosphorylated myosin as substrate, the phosphatase activity of PP1c is low and is enhanced on addition of MYPT. It is assumed that MYPT functions as a target subunit and binds to both PP1c and substrate. The N-terminal fragment of MYPT is responsible for the activation of PP1c activity, but how much of the N-terminal sequence is required is not established. An important point is that activation is not a general effect and is specific for myosin. It is not known if other substrates may be targeted to MYPT. There are two binding sites for PP1c on MYPT: a strong site in the N-terminal segment (containing the 4-residue motif) and a weaker site in the ankyrin repeats, possibly in repeats 5, 6 and 7. The location(s) of the myosin-binding sites on MYPT is controversial, and binding of myosin, or light chain, to both N- and C-terminal fragments has been reported. Regulation of myosin phosphatase activity involves changes in subunit interactions, although molecular mechanisms are not defined. There are basically two theories proposed for phosphatase inhibition (i.e. as seen in the agonist-induced increase in Ca2+ sensitivity). One hypothesis is that phosphorylation of Myosin light chain phosphatase MYPT (at residue 654 or 695 of the gizzard MYPT isoforms or an equivalent residue) inhibits the activity of the MP holoenzyme. The kinase involved is not established, but may be an unidentified endogenous kinase or a RhoA-activated kinase. The latter is an attractive possibility because there is convincing evidence that RhoA plays a crucial role in the Ca(2+)-sensitizing process in smooth muscle. A second idea involves arachidonic acid. This is released via phospholipase A2 and could either interact directly with MYPT and cause dissociation of the holoenzyme (thus effectively reducing the phosphatase activity to that of the isolated catalytic subunit), or it could activate a kinase that would phosphorylate MYPT and inhibit the phosphatase. It is possible that MP activity may also be activated, for example, following increases in cAMP and/or cGMP. Evidence in support of this is very limited and under in vivo conditions the phosphorylation of MYPT by the respective kinases has not been demonstrated. There is, however, a tentative hypothesis based on in vitro data that phosphorylation of MYPT by PKA alters its cellular localization. This involves a shuttle between the dephosphorylated membrane-bound and inhibited state (at least towards P-myosin) to a phosphorylated cytosolic or cytoskeletal, and active state. The pathway(s) discussed above originates at the cell membrane and is carried via one or more messengers to the level of the contractile apparatus where it is manifested by regulation of phosphatase activity. Various components of the route have been identified, including RhoA and the atypical PKC isoforms, but more remain to be discovered. It is possible that more than one pathway, or cascade, is  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号