首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
魏元  简龙  王鹏  孙艳霞  安连旗 《鞍钢技术》2011,(1):24-26,38
采用SEM和金相显微镜系统地研究了鞍钢2150 ASP工艺生产的高品质管线钢中非金属夹杂物在冶炼过程中的演变规律。结果表明,钢中非金属夹杂物的数量与全氧量的变化趋势一致;精炼初期钢中主要是含MnO的复合夹杂物,LF精炼后期直到铸坯,钢中的夹杂物主要是以Al2O3-CaO(MgO)为核心,周围为CaS类的复合夹杂物;铸坯中的夹杂物尺寸较小,平均为3.1个/mm2;该工艺路线生产的管线钢的洁净度能够满足用户的需求。  相似文献   

2.
周志伟  田俊  徐益峰 《炼钢》2019,35(5):68-74
在非调质钢铸坯上不同位置取样,用SEM-EDS和Aspex对试样中夹杂物进行分析统计,并用FactSage软件计算了夹杂物的析出情况,通过分析主要得出以下结论:从铸坯边部到中心,夹杂物的平均尺寸和平均面积逐渐增加,夹杂物密度逐渐减小,氧化物尺寸变化不大,硫化物尺寸逐渐增加。含硫非调质钢中夹杂物类型主要是硫化物和少量的氧化物。氧化物的析出温度为1 400~1 600℃,成分均在三元相图的固态区,不易聚合长大;MnS在1 450℃时析出数量逐渐增多,在1 350℃时开始大量析出;在铸坯凝固过程中,MnS以氧化物为核心形核析出。  相似文献   

3.
马娥 《河北冶金》2023,(8):63-66
在非调质钢中加入硫元素用于改善钢材切削性能,但硫与锰结合形成MnS夹杂严重影响钢材的横向冲击性能,因此含硫钢中的MnS夹杂物的控制是该类钢种生产的主要难题之一。对含硫非调质钢中MnS进行研究发现,在铸坯的柱状晶区域,MnS夹杂物分布均匀、量多细小;在等轴晶区域,MnS夹杂物分布不均匀,量少粗大;MnS超标比例为45%。通过在连铸过程中降低拉速和过热度、调整冷却参数,控制铸坯冷却速度,MnS夹杂显著细化,主要以2.5~3.5为主;在热处理过程中,随着加热温度由800℃提高到1 200℃,MnS分裂球化逐渐明显。调整连铸和加热工艺参数后,MnS超标比例降至10%,铸坯不合格率大大降低。  相似文献   

4.
对易切削钢AISI 1215铸坯中的夹杂物形貌、尺寸进行观察和统计,结果显示铸坯边缘区域为Ⅰ类MnS,中心区域为Ⅱ类MnS.根据Uhlmann的凝固前沿夹杂物析出模型以及铸坯化学成分分析,认为冷却速度和硫元素偏析对MnS夹杂形貌和尺寸分布有着重要影响,冷却速度越快,越易形成Ⅰ类MnS,硫元素偏析越严重越有利于形成Ⅱ类MnS.  相似文献   

5.
为了探究实际生产中非调质钢轧材横向塑性波动较大的原因,利用电子显微镜对比研究了连铸坯、轧材和拉伸试样断口中MnS夹杂物形貌及其演变行为,并对轧材横纵截面MnS夹杂物的尺寸、数量以及分布特征进行定量化表征,发现MnS夹杂物的分布特征是影响轧材横向塑性的关键。MnS夹杂物聚集分布,拉伸试样在受力过程中大量微裂纹在局部同时萌生,导致试样提前断裂,形成木质状的断口形貌,轧材表现出较差的横向塑性。当MnS夹杂物分布较为均匀时,拉伸试样受力相对均匀,应力集中小,轧材横向塑性较好。轧材中MnS夹杂物的分布行为主要取决于铸态下MnS夹杂物的形貌。减少铸态下II类树枝状MnS数量,是改善最终轧材横向塑性的关键。  相似文献   

6.
为了研究非调质钢中非金属夹杂物的演变规律和生成条件,实现对钢中夹杂物的精准控制,揭示了非调质钢冶炼全过程非金属夹杂物的形貌和成分转变。初始钢中夹杂物主要为镁铝尖晶石夹杂物,随着冶炼反应的进行,钢中逐渐出现部分含有CaO和CaS的夹杂物,同时还伴有MnS析出相生成。系统地通过热力学计算了1 873 K下一元脱氧钢中Al、Ti、Mg和Ca与O的平衡关系,二元脱氧钢中Al-Mg、Al-Ti、Al-Ca和Al-Mg-Ca脱氧夹杂物的生成区域。可为非调质钢脱氧过程脱氧剂的加入、钢液中溶解氧含量的控制以及非调质钢中不同夹杂物的生成和控制提供理论指导。  相似文献   

7.
摘要:实际生产过程中由于原料和操作控制不精确,钢中硫含量和非金属夹杂物波动较大,严重影响钢的洁净度。为了准确控制重轨钢中硫化锰等非金属夹杂物的尺寸、形态和数量,在实验室开展了硫含量对重轨钢中非金属夹杂物的影响研究。钢中硫质量分数增至70×10-6、110×10-6、140×10-6后随炉冷却,采用全自动夹杂物分析仪对钢中非金属夹杂物进行统计,获得了硫含量与钢中非金属夹杂物成分、尺寸、形态和数量的关系。结果表明,钢中夹杂物大部分为以氧化物为形核核心的复合型MnS;随着硫含量的升高,复合型MnS、MnO-SiO2和MgO-Al2O3-SiO2-CaO型夹杂增多,CaO-SiO2和MgO-CaO-SiO2夹杂减少;夹杂物平均尺寸随硫含量的升高而增大,且不同尺寸的夹杂物均有所增加,尺寸为2~10μm增多最明显;硫质量分数为(70~140)×10-6的钢液凝固过程液相中都能单独析出MnS,且硫含量越高,MnS析出越早,含量越多。  相似文献   

8.
为明确冶炼过程齿轮钢中非金属夹杂物的演变行为,实现齿轮钢中夹杂物特性的有效控制和提高产品质量,以20CrMnTi齿轮钢为研究对象,通过对LF-VD-CC工艺齿轮钢生产过程的取样分析,利用扫描电子显微镜对冶炼过程不同阶段的夹杂物成分、形貌、尺寸和数量等特性进行系统分析研究。结果表明,LF进站时,夹杂物主要为脱氧产物Al2O3-(MnS)和少量的镁铝尖晶石夹杂物;LF化渣后至精炼末期,由于渣/钢反应和耐火材料侵蚀带入的MgO和CaO等,导致夹杂物转变为Al2O3-MgO-MnS-CaS和Al2O3-MgO-CaO;VD精炼过程中夹杂物的类型基本不变,但从VD破空到铸坯过程,Al2O3-MgO-CaO夹杂物基本消失,试样中的夹杂物类型主要为Al2O3-MgO-MnS-CaS和TiN-MnS夹杂物。  相似文献   

9.
刘石虹  王新华  戴观文  梁玫  李宏 《钢铁》2007,42(9):37-40
通过采用提高电炉炼钢铁水比、强化脱磷、高碱度精炼炉渣、直接脱氧和强扩散脱氧等工艺措施,生产出了w([P])=0.005%、w(T[O])<0.001%的高纯净度非调质钢.研究中发现,在铸坯柱状晶与中心等轴晶带的边界处,C、P、S、Mn发生较大的正偏析.钢中的非金属夹杂物主要有MnS-MnO类夹杂物和TiN-VN类析出物2个类型,其中MnS-MnO类夹杂物中MnS的质量分数为70%~81%,为塑性夹杂物.TiN-VN类夹杂物中TiN的质量分数为72%~85% ,在轧制过程不变形.  相似文献   

10.
吕迺冰  高航  刘珂  刘斌  徐士新  周洁 《钢铁》2022,57(6):50-56
 中碳超高硫易切削钢SAE144是兼具力学性能与切削性能的结构钢,用于制造汽车发动机密封阀件等,产品多采用转炉/电炉→LF精炼→连铸小方坯→线棒材热轧→冷拉及机加工成型流程生产,近年来市场热度稳步提升。若钢中MnS尺寸过大,零件加工使用过程易发生探伤不合、切削性能差、带状组织严重、力学性能各相异性显著,甚至拉拔加工断裂等问题。MnS夹杂物多在铸坯凝固后期形成,随着轧制与钢基体同步变形,控制该类钢种铸坯内MnS原始尺寸成为控制热轧材中MnS夹杂物形态及尺寸的最关键环节。为控制热轧超高硫中碳钢盘条中MnS夹杂物,利用钢坯凝固数值模拟、第二相析出理论、Ostwald熟化理论计算分析了160 mm2钢坯中硫元素偏析及MnS的生成、长大和熟化过程。计算结果表明,当固相分数fs为0.446、硫微观偏析比达到2.19时,铸坯在凝固末期生成MnS。凝固过程中MnS的生长过程决定了钢坯中MnS颗粒的直径。理论计算表明,当连铸二次冷却水量固定为0.6L/kg时,拉速为1.6、2.1和2.6 m/min时,160 mm2方坯中心的MnS分别增长到30.6、32.2和34.6 μm,与实际测试结果一致。控制该类钢种线材中MnS尺寸的关键是提高二冷区的冷却强度,降低连铸拉速。基于该系列计算方法,提出了160 mm2钢坯中与MnS直径控制目标相匹配的连铸工艺参数控制范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号