首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Electrospray-assisted laser desorption/ionization (ELDI), an ionization method that combines laser desorption and electrospray ionization (ESI), can be used under ambient conditions to characterize organic compounds (including FD&C dyes, amines, extracts of a drug tablet) separated in the central track on a thin-layer chromatography (TLC) plate coated with either reversed-phase C18 particles or normal-phase silica gel. After drying, the TLC plate was placed on an acrylic sample holder set in front of the sampling skimmer of an ion trap mass analyzer. The chemicals at the center of the TLC plate were analyzed by pushing the sample holder into the path of a laser beam with a syringe pump. The molecules in the sample spot were desorbed by continuously irradiating the surface of the TLC plate with a pulsed nitrogen laser. Then, the desorbed sample molecules entered an ESI plume where they were ionized through the reactions with the charged species (including protons, hydronium ions and their cluster ions, solvent ions, and charged droplets) generated by electrospraying a methanol/water solution. MS/MS analyses were also performed to further characterize the analytes. The detection limit of TLC/ELDI/MS is approximately 10(-6) M. This was evaluated by using FD&C red dye as the standard. A linear relationship was found for the calibration curve with the concentration of FD&C red dye ranged from 10(-3) to 10(-6) M.  相似文献   

2.
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.  相似文献   

3.
Direct mass spectrometric quantification of peptides and proteins is compromised by the wide variabilities in ionization efficiency which are hallmarks of both the MALDI and ESI ionization techniques. We describe here the implementation of a fluorescence detection system for measurement of the UV-excited intrinsic fluorescence (UV-IF) from peptides and proteins just prior to their exit and electrospray ionization from an ESI capillary. The fluorescence signal provides a quantifiable measure of the amount of protein or peptide present, while direct or tandem mass spectrometric analysis (MS/MS) on the ESI-generated ions provides information on identity. We fabricated an inexpensive, modular fluorescence excitation and detection device utilizing an ultraviolet light-emitting diode for excitation in a ~300 nL fluorescence detection cell integrated into the fused-silica separation column. The fluorescence signal is linear over 3 orders of magnitude with on-column limits of detection in the low femtomole range. Chromatographically separated intact proteins analyzed using UV-IF prior to top-down mass spectrometry demonstrated sensitive detection of proteins as large as 77 kDa.  相似文献   

4.
We have developed an atmospheric pressure ionization technique called liquid matrix-assisted laser desorption electrospray ionization (liq-MALDESI) for the generation of multiply charged ions by laser desorption from liquid samples deposited onto a stainless steel sample target biased at a high potential. This variant of our previously reported MALDESI source does not utilize an ESI emitter to postionize neutrals. Conversely, we report desorption and ionization from a macroscopic charged droplet. We demonstrate high mass resolving power single-acquisition FT-ICR-MS analysis of peptides and proteins ranging from 1 to 8.6 kDa at atmospheric pressure. The liquid sample acts as a macroscopic charged droplet similar to those generated by electrospray ionization, whereby laser irradiation desorbs analyte from organic matrix containing charged droplets generating multiply charged ions. We have observed a singly charged radical cation of an electrochemically active species indicating oxidation occurs for analytes and therefore water; the latter would play a key role in the mechanism of ionization. Moreover, we demonstrate an increase in ion abundance and a concurrent decrease in surface tension with an increase in the applied potential.  相似文献   

5.
Liquid electrospray laser desorption/ionization (ELDI) mass spectrometry allows desorption and ionization of proteins directly from aqueous solutions and biological fluids under ambient conditions. Native protein ions such as those of myoglobin, cytochrome c, and hemoglobin were obtained. A droplet (ca. 5 microL) containing the protein molecules and micrometer-sized particles (e.g., carbon graphite powder) is irradiated with a pulsed UV laser. The laser energy adsorbed by the inert particles is transferred to the surrounding solvent and protein molecules, leading to their desorption; the desorbed gaseous molecules are then postionized within an electrospray (ESI) plume to generate the ESI-like protein ions. With the use of this technique, we detected only the protonated protein ions in various biological fluids (including human tears, cow milk, serum, and bacterial extracts) without interference from their corresponding sodiated or potassiated adduct ions. In addition, we rapidly quantified the levels of glycosylated hemoglobin present in drops of whole blood obtained from diabetic patients without the need of sample pretreatment.  相似文献   

6.
MS detection coupled with digital microfluidic (DMF) devices has most commonly been demonstrated in an offline manner using matrix assisted laser desorption ionization. In this work, an eductor is demonstrated which facilitated online coupling of DMF with electrospray ionization MS detection. The eductor consisted of a transfer capillary, a standard ESI needle, and a tapered gas nozzle. As a pulse of N(2) was applied to the nozzle, a pressure differential was induced at the outlet of the ESI needle that pulled droplets from the DMF, past the ESI needle, and into the flow of gas exiting the nozzle, allowing detection by MS. Operating position, ionization potential, and N(2) pressure were optimized, with the optimum ionization potential and N(2) pressure found to be 3206 V and 80 psi, respectively. Online MS detection was demonstrated from both open and closed DMF devices using 2.5 μL and 630 nL aqueous droplets, respectively. Relative quantitation by DMF-MS was demonstrated by mixing droplets of caffeine with droplets of theophylline on an open DMF device and comparing the peak area ratio obtained to an on-chip generated calibration curve. This eductor-based method for transferring droplets has the potential for rapid, versatile, and high-throughput microfluidic analyses.  相似文献   

7.
Electrospray-assisted laser desorption/ionization (ELDI) combined with mass spectrometry allows chemical and biochemical compounds to be characterized directly from hydrophilic and hydrophobic organic solutions mixed with carbon powders under ambient conditions. Organic and inorganic compounds dissolved in polar or nonpolar solvent such as methanol, tetrahydrofuran, ethyl acetate, toluene, dichloromethane, or hexane can be detected using this ambient ionization technique without prior pretreatment. We have used this technique to monitor the progress in several ongoing reactions: the epoxidation of chalcone in ethanol, the chelation of ethylenediaminetetraacetic acid with copper and nickel ions in aqueous solution, the chelation of 1,10-phenanthroline with iron(II) in methanol, and the tryptic digestion of cytochrome c in aqueous solution. Liquid-ELDI analyses simply require irradiation of the surface of the sample solution with a pulsed ultraviolet laser; the laser energy is adsorbed by the carbon powder presuspended in the sample solution; the absorbed laser energy is then transferred to the surrounding solvent and to the analyte molecules in the solution, leading to their desorption; the desorbed gaseous analyte molecules are then postionized within an electrospray (ESI) plume to generate ESI-like analyte ions.  相似文献   

8.
Nayak R  Liu J  Sen AK  Knapp DR 《Analytical chemistry》2008,80(22):8840-8844
A gold coated nanoporous alumina surface was used for dual ionization mode mass spectrometric analysis using desorption electrospray ionization (DESI) and laser desorption ionization (LDI). DESI and LDI mass spectrometry (MS) from the nanoporous alumina surface were compared with conventional electrospray ionization (ESI) mass spectrometry and matrix assisted laser desorption ionization (MALDI) for analysis of tryptic digests of proteins. Combined use of DESI and LDI offer greater peptide coverage than either method alone and comparable peptide coverage as with dual MALDI and ESI. This dual ionization technique using a common platform with same sample spot demonstrates a potential time and cost-effective tool for improved shotgun proteomic analysis.  相似文献   

9.
The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization, a recently developed ambient ionization method. We demonstrate online coupling of nanospray desorption electrospray ionization MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nanospray desorption electrospray ionization for MS analysis. Furthermore, we show first coupling of nanospray desorption electrospray ionization MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directly from electrode surfaces. Because of its inherent sensitivity, nanospray desorption electrospray ionization enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine o-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nanospray desorption electrospray ionization as a novel interface for electrochemical mass spectrometry research.  相似文献   

10.
A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.  相似文献   

11.
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.  相似文献   

12.
The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide families are exceptionally well separated because of the ability of IP-LSI to produce multiple charging.  相似文献   

13.
Determination of site-specific changes in the levels of protein phosphorylation in mammals presents a formidable analytical challenge. Here, we demonstrate a strategy for such analyses utilizing a combination of stable isotope chemical labeling and tandem mass spectrometry. Phosphoproteins of interest are isolated from two sets of animals that have undergone differential drug treatments, separated by SDS-PAGE, excised, and subjected to in-gel enzymatic digestion. Using a simple chemical labeling step, we introduce stable, isotopically distinct mass tags into each of the two sets of peptides that originate from the samples under comparison, mix the samples, and subject the resulting mixture to a procedure based on our previously reported hypothesis-driven multistage MS (HMS-MS) method (Chang, E. J.; Archambault, V.; McLachlin, D. T.; Krutchinsky, A. N.; Chait, B. T. Anal. Chem. 2004, 76, 4472-4483). The method takes advantage of the dominant loss of H3PO4 during MS/MS from singly charged phosphopeptide ions produced by matrix-assisted laser desorption/ionization (MALDI) in the ion trap mass spectrometer. In the present work, quantitation is achieved by isolating the range of m/z values that include both isotopic forms of the putative phosphopeptide and measuring the relative intensities of the two resulting -98-Da fragment ion peaks. This MS/MS measurement can be repeated on the same MALDI sample for all potential phosphopeptide ion pairs that we hypothesize might be produced from the protein under study. Use of MS/MS for quantitation greatly increases the sensitivity of the method and allows us to measure relatively low levels of phosphorylation, phosphopeptides, or both that are not easily observable by single-stage MS. We apply the current method to the determination of changes in the levels of phosphorylation in DARPP-32 from the mouse striatum upon treatment of animals with psychostimulant drugs.  相似文献   

14.
Laserspray ionization (LSI) is a new approach to producing multiply charged ions from solids on surfaces by laser ablation of matrixes commonly used in matrix-assisted laser desorption/ionization (MALDI). We show that the only necessity of the laser for producing multiply charged ions is to deliver particles or droplets of the matrix/analyte mixture to an ionization zone which is simply a heated inlet to the vacuum of the mass spectrometer. Several other methods for delivering sample are demonstrated to produce nearly equivalent results. One example shows the use of an air gun replacing the laser and producing mass spectra of proteins by shooting pellets into a metal plate which has matrix/analyte applied to the opposite side and near the ion entrance inlet to the mass spectrometer. Multiply charged ions of proteins are produced in the absence of any electric field or laser and with only the need of a heated ion entrance capillary or skimmer. The commonality of the matrix with MALDI and the mild conditions necessary for formation of ions brings into question the mechanism of formation of multiply charged ions and the importance of matrix structure in this process.  相似文献   

15.
Electrospray ionization (ESI) of native proteins results in a narrow distribution of low protonation states. ESI for these folded species proceeds via the charged residue mechanism. In contrast, ESI of unfolded proteins yields a wide distribution of much higher charge states. The current work develops a model that can account for this effect. Recent molecular dynamics simulations revealed that ESI for unfolded polypeptide chains involves protein ejection from nanodroplets, representing a type of ion evaporation mechanism (IEM). We point out the analogies between this IEM, and the dissociation of gaseous protein complexes after collisional activation. The latter process commences with unraveling of a single subunit, in concert with Coulombically driven proton transfer. The subunit then separates from the residual complex as a highly charged ion. We propose that similar charge equilibration events accompany the IEM of unfolded proteins, thereby causing the formation of high ESI charge states. A bead chain model is used for examining how charge is partitioned as protein and droplet separate. It is shown that protein ejection from differently sized ESI droplets generates a range of protonation states. The predicted behavior agrees well with experimental data.  相似文献   

16.
17.
A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary radio frequency is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton-transfer reactions. For the modified instrument, the mass resolving power is approximately 8000 for a wide m/z range, and the mass accuracy is approximately 20 ppm for external calibration and approximately 5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MS(n) experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z-type fragment ions.  相似文献   

18.
First examples of highly charged ions in mass spectrometry (MS) produced from the solid state without using solvent during either sample preparation or mass measurement are reported. Matrix material, matrix/analyte homogenization time and frequency, atmospheric pressure (AP) to vacuum inlet temperature, and mass analyzer ion trap conditions are factors that influence the abundance of the highly charged ions created by laserspray ionization (LSI). LSI, like matrix-assisted laser desorption/ionization (MALDI), uses laser ablation of a matrix/analyte mixture from a surface to produce ions. Preparing the matrix/analyte sample without the use of solvent provides the ability to perform total solvent-free analysis (TSA) consisting of solvent-free ionization and solvent-free gas-phase separation using ion mobility spectrometry (IMS) MS. Peptides and small proteins such as non-β-amyloid components of Alzheimer's disease and bovine insulin are examples in which LSI and TSA were combined to produce multiply charged ions, similar to electrospray ionization, but without the use of solvent. Advantages using solvent-free LSI and IMS-MS include simplicity, rapid data acquisition, reduction of sample complexity, and the potential for an enhanced effective dynamic range. This is achieved by more inclusive ionization and improved separation of mixture components as a result of multiple charging.  相似文献   

19.
Charge reduction electrospray mass spectrometry   总被引:3,自引:0,他引:3  
A new mass spectrometric technique, charge reduction electrospray mass spectrometry (CREMS), allowing the analysis of complex mixtures of biological molecules is described. The charge state of ions produced by electrospray ionization may be reduced in a controlled manner to yield predominantly singly charged ions through reactions with bipolar (i.e., both positively and negatively charged) ions generated using a 210Po alpha particle source. The electrospray-generated multiply charged ions undergo charge reduction in a "neutralization chamber" positioned before the entrance nozzle to the mass spectrometer. The ions are detected using a commercial orthogonal electrospray time-of-flight mass spectrometer, although the neutralization chamber can be adapted to virtually any mass analyzer. The CREMS results obtained exhibit a signal intensity drop-off with increasing oligonucleotide size similar to that observed with matrix-assisted laser desorption/ionization mass spectrometry. Proton-transfer reactions were found to be responsible for reducing charge on proteins and oligonucleotides in both positive and negative ion mode.  相似文献   

20.
An integrated gel protein identification technology is developed and demonstrated for the effective ( approximately 90% recovery), rapid (less than 5 min), and sensitive identification (as low as 1 ng gel protein loading) of gel-resolved proteins using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). This integrated technology involves on-line combination of electronic protein transfer with nanoscale proteolytic digestion in a capillary platform, enabling electrokinetic-based protein extraction and stacking, real-time proteolytic cleavage of extracted proteins, and direct deposition of protein digests onto MALDI targets. By revisiting the yeast two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) in similar isoelectric point and molecular mass ranges as studied by Gygi and co-workers (Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9390-9395), we are additionally able to identify a large number of low abundance proteins with codon adaptation index (CAI) values of <0.2 and increase the proteome coverage to nearly 50%. The CAI value distribution for identified yeast proteins now more closely approximates that predicted for the entire yeast proteome. We further note that the current single-capillary methodology can be easily expanded to a multiplexed capillary platform as a ultrahigh throughput and greatly effective tool for linking 2-D PAGE with MS, particularly for the analysis of low-abundance proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号