首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
MnZnFe2O4磁性纳米添加剂抗磨减磨及自修复效应研究   总被引:1,自引:0,他引:1  
利用四球和立式万能摩擦磨损试验机考察了MnZnFe2O4纳米磁性微粒作为润滑油添加剂抗磨减摩性能及对磨损表面的修复作用,并用扫描电子显微镜观察分析了磨斑表面形貌.结果表明,MnZnFe2O4纳米微粒添加剂能显著提高润滑油的承载能力,且减小磨斑直径,减小磨损表面犁沟.但MnZnFe2O4纳米微粒添加剂对润滑油的抗磨减磨效果受加载载荷影响:低载时,添加MnZnFe2O4纳米微粒润滑油的摩擦系数与基础油相比无明显改善;高载时,摩擦系数至少降低16%.这表明高载有利于MnZnFe2O4纳米微粒在摩擦表面沉积并在接触区的高温高压作用下熔融铺展,形成低剪切强度的表面膜,并对磨损表面具有一定的修复作用.  相似文献   

2.
研究了加入纳米铜添加剂的润滑油的摩擦学性能和主要理化性能.在XP-6数控摩擦磨损试验机和四球摩擦试验机上进行了纳米铜的摩擦学性能试验,结果表明,纳米铜对钢-钢摩擦副表现出良好的抗磨减磨性能,与未加添加剂的基础油相比,可使Pa值提高34.95%,磨斑直径减少了56.8%,摩擦系数降低39.1%;理化试验表明,加入纳米铜后的基础油仍具有较好的理化特性.  相似文献   

3.
在蓖麻油中引入磷和氮,合成了一种磷氮化改性蓖麻油型添加剂,并利用红外光谱对其主要官能团进行了鉴定,利用四球试验机考察其在150SN基础油中的摩擦学性能,用扫描电子显微镜观察分析磨斑表面的形貌.结果表明:磷氮化改性蓖麻油型添加剂具有优异的极压、抗磨减摩性能,且在150SN基础油中的最佳添加量为2%,它较150SN基础油能明显减轻钢球表面磨损.  相似文献   

4.
采用等离子体法制备的n-Cu粒子为原料,用表面改性剂对粉体表面处理后作为添加剂加入到基础润滑油中以提高润滑油的抗磨减摩性能。结果表明,当油液中改性后的n—Cu粒子为5%(M)时,与相同条件下未经改性的n-Cu相比,磨斑直径减少了36.0%的同时最大无负荷提高了20.3%:且油液有较好的稳定性能。  相似文献   

5.
磷氮化蓖麻油润滑添加剂的合成及其摩擦学性能   总被引:1,自引:0,他引:1  
在蓖麻油中引入磷和氮,合成了一种磷氮化改性蓖麻油型添加剂,并利用红外光谱对其主要官能团进行了鉴定,利用四球试验机考察其在150SN基础油中的摩擦学性能,用扫描电子显微镜观察分析磨斑表面的形貌.结果表明:磷氮化改性蓖麻油型添加剂具有优异的极压、抗磨减摩性能,且在150SN基础油中的最佳添加量为2%,它较150SN基础油能明显减轻钢球表面磨损.  相似文献   

6.
为提高润滑油的抗磨减摩性能,提升机械设备在恶劣工况下运行的稳定性和安全性,通过四球机和低速重载摩擦磨损试验机研究纳米硼酸钙(CaB)和二烷基二硫代磷酸钼(MoDDP)复合润滑油添加剂的减摩抗磨性能,期望取得较单一添加剂更优异的润滑效果。研究结果显示:制备的纳米CaB为不规则的纳米薄片状,平均尺寸为50~150 nm,经油酸改性后在基础油中具有良好的分散稳定性;纳米CaB和MoDDP均可显著提高润滑油的润滑效果,随着纳米CaB和MoDDP添加质量分数的增加,摩擦因数和磨斑直径呈现先降低后升高的趋势,纳米CaB和MoDDP的最佳添加质量分数分别为2.0%和1.5%;与单一添加CaB、MoDDP相比,复合CaB/MoDDP可进一步改善润滑油的减摩抗磨性能,MoDDP和CaB的最佳质量配比为1.5%∶3.0%,此时摩擦副的摩擦因数最小,磨痕最浅,磨斑直径最小,最大无卡咬负荷最高,并且在低速重载工况下,显示出优良的润滑效果,表明CaB/MoDDP复合润滑油添加剂具有良好的减摩抗磨效果,可以显著提高润滑油的性能。  相似文献   

7.
纳米铜作润滑油添加剂的性能研究   总被引:2,自引:0,他引:2  
研究了加入纳米铜添加剂的润滑油的摩擦学性能和主要理化性能.在XP-6数控摩擦磨损试验机和四球摩擦试验机上进行了纳米铜的摩擦学性能试验,结果表明,纳米铜对钢-钢摩擦副表现出良好的抗磨减磨性能,与未加添加剂的基础油相比,可使PB值提高34.95%,磨斑直径减少了56.8%,摩擦系数降低39.1%;理化试验表明,加入纳米铜后的基础油仍具有较好的理化特性.  相似文献   

8.
以硬脂酸、乙醇胺以及硼酸为原料制备了一种可用作润滑油抗磨添加剂的含氮硼酸酯。通过考察反应物三种原料物质的量比,以及氢氧化钠的加入等因素对产物收率的影响,确定了制备的最佳条件,考察了其作为润滑油基础油抗磨剂时添加量对抗磨性的影响,并利用红外光谱对合成的硼酸酯进行了表征。实验结果表明:当n(硬脂酸)∶n(二乙醇胺)∶n(硼酸)=1.0∶1.1∶1.0、反应温度为105~110℃、反应时间为11h时,反应收率达到43.33%;当含氮硼酸酯在液体石蜡中的质量分数为0.25%时,PB(润滑油的承载力)达到最大值697.9N,磨斑直径达最小值0.49mm,摩擦系数较液体石蜡油的摩擦系数减小了0.017。  相似文献   

9.
采用多级静态萃取模拟的方法对大连石化公司润滑油糠醛精制抽提塔的理论板数进行标定。结果表明,该抽提塔的理论板数为2—3块,在操作条件不变的情况下,现有糠醛抽提塔至少要4块理论板才能使基础油的酸值符合要求。采用具有4块理论板的中试装置对标定结果进行了实验验证,在与工业装置相当的操作条件下,精制油收率为76.0%,黏度指数为106,酸值为0.0174mg(KOH)/g,产品质量能够满足HVl400SN润滑油基础油质量要求。  相似文献   

10.
以试制的纳米铜添加剂为试验单剂,选择车辆齿轮油500SN为基础油,在长磨实验条件下,进行纳米铜粉的抗磨和减摩性能试探性研究,探讨纳米金属粉体对车辆齿轮油500SN性能的影响。在1200 r/min、2 h、98 N的条件下,加入质量分数为0?05%的实验制备纳米铜粉可明显提高基础油的抗磨减摩性能,磨斑直径降低了18?1%,摩擦系数降低了13?6%;在1200 r/min、2 h、392 N 的条件下,加入质量分数为0?05%~0?7%的纳米铜粉可以提高基础油的抗磨性能。随着质量分数的逐渐增大,纳米铜粉的抗磨减摩性能逐渐变差,以质量分数为0?05%的纳米铜粉效果最佳。  相似文献   

11.
合成了两种咪唑啉型含氮硼酸酯(MBN-1和MBN-2),并对产品的结构进行了表征,同时分析了产品的水解稳定性、油溶性、热稳定性以及摩擦学性能。结果表明:与MBN-1相比,MBN-2具有较好的热稳定性,分解温度达到280℃,水解稳定性大于30d,可以较好地溶解在基础油中,对铜片无腐蚀,当其在基础油中的质量分数为2%时,MBN-2能明显减轻钢球表面磨损。  相似文献   

12.
为了提高丁腈橡胶的力学及摩擦学性能,利用以浓硫酸为主配制的氧化性溶液对其进行表面化学改性.研究了硫酸浓度、浸泡时间对丁腈橡胶表面力学和摩擦学性能的影响,借助SEM分别观察其断裂和磨损形貌,分析了表面改性对丁腈橡胶性能的影响.结果表明,经50%硫酸混合溶液处理的丁腈橡胶,其力学和摩擦学性能随浸泡时间的延长而大幅度提高;经70%硫酸混合溶液处理的则结果相反.硫酸浓度过大可使表面组织致密性增加、硬度增大,但表面出现裂纹,其力学性能和摩擦学性能大幅下降.  相似文献   

13.
采用横流5kWCO2激光在低碳钢基体表面制备纳米La2O3/Ni基激光熔覆涂层。采用光学显微镜(OP)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)分别对熔覆涂层进行显微组织和相组成的观察。用显微硬度计和滑动磨损试验机对熔覆涂层的硬度和耐磨性进行测试。试验结果表明:熔覆层主要由γ-(Ni,Fe),Cr23C6,LaNi10.5Si2.5等相组成,随离结合面距离增大,熔覆层的组织逐渐变细。随着纳米La2O3加入量及扫描速度增加,熔覆层组织变细。加入纳米La2O3后,平均硬度由未加时500HV0.5提高到约700HV0.5,耐磨性也得到不同程度的提高。在本试验条件下,添加质量分数为1.0%纳米La2O3熔覆层的耐磨性明显高于质量分数为1.5%纳米La2O3熔覆层的耐磨性。扫描速率采用250mm/min的熔覆层,其综合性能最佳。  相似文献   

14.
采用微乳液TiCl4水解法制备均匀分散于45号变压器油中的TiO2粒子,并分别利用潮湿箱和四球摩擦试验机考察其对基础油防护性能的影响和作为油品添加剂的摩擦学行为.结果表明:所得纳米TiO2粒径分布均匀,为80~150nm;由于TiO2的存在使得基础油防护性能提高100倍以上;当载荷达到700N时,磨斑面积减少了40%.  相似文献   

15.
月桂酸铅的原位合成及摩擦学性能研究   总被引:3,自引:0,他引:3  
在200SN矿物基础油中原位合成了油溶性月桂酸铅(LL),并用FT-IR对其进行了结构表征,在高速低负荷和低速高负荷两种条件下,用四球摩擦磨损试验对LL和月桂酸(LA)进行了摩擦学性能评价,用往复式摩擦试验机对其抗磨减摩性能进行了考察。结果表明:月桂酸铅具有良好的抗磨性能、一定的减摩性能和中等的极压性能。为了解其抗磨减摩机理,用SEM及XPS研究了磨斑表面,发现摩擦学性能改善的原因在于LL在摩擦副表面形成吸附膜和在摩擦条件下部分吸附膜发生摩擦化学反应产生了铅氧化物膜。  相似文献   

16.
MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.  相似文献   

17.
以异丙醇或异辛醇、五硫化二磷、稀土氯化物为原料 ,合成了四种油溶性二烷基二硫代磷酸稀土盐 .以红外光谱和化学分析确定了所合成稀土盐的结构和化学组成 .在四球实验机上研究了几种稀土盐抗磨添加剂在不同加入量的情况下的最大无卡咬负荷及在不同负荷下抗磨损能力 ,并与二烷基二硫代磷酸锌的性能进行了比较 .结果表明 :本研究制备的油溶性二异丙基二硫代磷酸镧LaDDP - 3、二异丙基二硫代磷酸钕Nd DDP - 3和二异辛基二硫代磷酸镧LaDDP - 8、二异辛基二硫代磷酸钕NdDDP - 8具有比二烷基二硫代磷酸锌(ZnDDP)好的抗磨性能和减摩性能 .EDXA分析表明在实验条件下 ,稀土元素摩擦扩渗进入了材料的表面 ,这可能是此类稀土盐具有优秀的抗磨性能的主要原因  相似文献   

18.
为了揭示橡胶磨粒侵蚀磨损机理,采用MPV-600型磨粒磨损试验机考察了丁腈橡胶(NBR)与转子45#钢配副在不同砂粒浓度原油条件下的磨粒侵蚀磨损行为,并用扫描电子显微镜及x-射线能量散射分析(SEM-EDXA)法对橡胶的磨痕表面形貌、元素成分进行了分析.分析结果表明:NBR摩擦系数随着原油介质中砂粒浓度的增大而增大,但当砂粒浓度增加到一定程度后,其摩擦系数反而减小.NBR磨粒侵蚀磨损的机理是:橡胶表层产生微切削作用而使其发生微观撕裂和变形,由氧化降解形成的胶粘层在磨损过程中不断地形成和被磨损;NBR在含砂原油介质中可能发生了分子链断裂,生成了初级活性自由基,断裂后生成分散性的小分子单体,继而发生异构化.  相似文献   

19.
通过对MS-800四球试验机油杯的改进,在测试区域内产生可调磁场;利用改进后的油杯在四球机上测定磁场作用下添加锰锌铁氧纳米磁性颗粒润滑油的承载能力.结果表明:外加磁场作用下,磁性液体的摩擦学性能得到较大改善,首先磁性液体黏度值随磁场强度的增强而增大,从而提高了添加锰锌铁氧体磁性颗粒润滑油的综合磨损值,最大可达基础液的1.43倍;其次纳米磁性颗粒中的Zn元素可使润滑油的最大无卡绞负荷PB值提高50%,烧结负荷PD值提高100%.  相似文献   

20.
Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号