首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TCR-associated CD3 complex consists of four subunits, i.e. CD3 gamma, delta, epsilon and zeta, which are expressed very early in T cell development prior to the expression of the TCR and the pre-TCR alpha chain. It is unclear whether the expression of each CD3 protein is independent of, or is influenced by, other CD3 subunits. To study whether CD3 epsilon regulates expression of CD3 gamma and delta genes, we generated a strain of CD3 epsilon-deficient mice termed CD3 epsilon(delta P/delta P) (epsilon(delta P)), in which the promoter of CD3E was disrupted, and subsequently reconstituted these mice with a CD3 epsilon transgene. In the epsilon(delta P) mice, T cell development is arrested at the double-negative stage and targeting the CD3 epsilon gene caused severe inhibition of CD3 gamma and delta gene expression. Introduction of the CD3 epsilon transgene did not restore CD3 gamma and delta expression. However, a very small fraction of prothymocytes that expressed CD3 gamma and delta was rescued upon reconstitution of the CD3 epsilon transgene. Remarkably, this rescue led to a very efficient differentiation and maturation of thymocytes, resulting in a significant T cell population in the periphery. These results demonstrate that CD3 epsilon does not regulate expression of CD3 gamma and delta genes, and underscore the capacity of each prothymocyte to give rise to a large number of mature peripheral T cells.  相似文献   

2.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

3.
CD3gamma and CD3delta are two highly related components of the T cell receptor (TCR)-CD3 complex which is essential for the assembly and signal transduction of the T cell receptor on mature T cells. In gene knockout mice deficient in either CD3delta or CD3gamma, early thymic development mediated by pre-TCR was either undisturbed or severely blocked, respectively, and small numbers of TCR-alphabeta+ T cells were detected in the periphery of both mice. gammadelta T cell development was either normal in CD3delta-/- mice or partially blocked in CD3gamma-/- mice. To examine the collective role of CD3gamma and CD3delta in the assembly and function of pre-TCR and in the development of gammadelta T cells, we generated a mouse strain with a disruption in both CD3gamma and CD3delta genes (CD3gammadelta-/-). In contrast to mice deficient in either CD3gamma or CD3delta chains, early thymic development mediated by pre-TCR is completely blocked, and TCR-alphabeta+ or TCR-gammadelta+ T cells were absent in the CD3gammadelta-/- mice. Taken together, these studies demonstrated that CD3gamma and CD3delta play an essential, yet partially overlapping, role in the development of both alphabeta and gammadelta T cell lineages.  相似文献   

4.
The zeta family includes zeta, eta, and FcepsilonRIgamma (Fcgamma). Dimers of the zeta family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking zeta/eta chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a zeta family dimer can promote T cell maturation, or that in the absence of zeta/eta, Fcgamma serves as a subunit in TCR complexes. To elucidate the role of zeta family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only zeta/eta or Fcgamma. The data reveal that surface complexes that are expressed in the absence of zeta family dimers are capable of transducing signals required for alpha/beta-T cell development. Strikingly, T cells generated in both zeta/eta-/- and zeta/eta-/--Fcgamma-/- mice exhibit a memory phenotype and elaborate interferon gamma. Finally, examination of different T cell populations reveals that zeta/eta and Fcgamma have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of zeta family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations.  相似文献   

5.
Unlike TCR-alpha beta cells, TCR-gamma delta cells express a distinct member of the zeta family, the gamma-chain of Fc epsilon RI (Fc epsilon RI gamma) within the TCR complex. To study the role of the Fc epsilon RI gamma-chain in TCR-gamma delta cells, a TCR-gamma delta transgenic mouse (G8) has been crossed with CD3 zeta-chain-deficient mice (G8.zeta-/-). Thy-1+ spleen and lymph node cells of these animals expressed low levels of CD3/TCR. These results suggested that the zeta-chain is required for effective TCR transport to the cell surface. In contrast, intraepithelial TCR-gamma delta cells of G8.zeta-/- mice expressed high levels of TCR. Immunoprecipitation with anti-CD3 showed that Fc epsilon RI gamma-chains were associated with the TCR complex in T cells isolated from zeta-deficient mice. Although the Fc epsilon RI gamma-expressing T cells proliferated in response to stimulation by TCR-specific Abs including anti-CD3 epsilon, anti-pan gamma delta, and anti-V gamma 2 mAb, the G8.zeta-/- T cells did not respond to the G8-specific Ag (T10b), anti-Thy-1 mAb, or Con A. The unresponsiveness to the Ag was not due to the reduced TCR expression, because intraepithelial TCR-gamma delta cells from the zeta-deficient mice did not respond to Ag. The inability of the G8.zeta-/- T cells to respond to Ag could not be overcome by providing an anti-CD28 costimulatory signal or by adding exogenous rIL-2. Taken together, our data suggest that the Fc epsilon RI gamma-chain associates with the TCR-gamma delta complex in the absence of the zeta-chain, but it is not able to substitute for the zeta-chain for effective transport of TCR to the cell surface or functional responses to Ag.  相似文献   

6.
Engagement of alpha-beta T cell receptors (TCRs) induces many events in the T cells bearing them. The proteins that transduce these signals to the inside of cells are the TCR-associated CD3 polypeptides and zeta-zeta or zeta-eta dimers. Previous experiments using knockout (KO) mice that lacked zeta (zeta KO) showed that zeta is required for good surface expression of TCRs on almost all T cells and for normal T cell development. Surprisingly, however, in zeta KO mice, a subset of T cells in the gut of both zeta KO and normal mice bore nearly normal levels of TCR on its surface. This was because zeta was replaced by the Fc epsilon RI gamma (FcR gamma). These cells were relatively nonreactive to stimuli via their TCRs. In addition, a previous report showed that zeta replacement by the FcR gamma chain also might occur on T cells in mice bearing tumors long term. Again, these T cells were nonreactive. To understand the consequences of zeta substitution by FcR gamma for T cell development and function in vivo, we produced zeta KO mice expressing FcR gamma in all of their T cells (FcR gamma TG zeta KO mice). In these mice, TCR expression on immature thymocytes was only slightly reduced compared with controls, and thymocyte selection occurred normally and gave rise to functional, mature T cells. Therefore, the nonreactivity of the FcR gamma + lymphocytes in the gut or in tumor-bearing mice must be caused by some other phenomenon. Unexpectedly, the TCR levels of mature T cells in FcR gamma TG zeta KO mice were lower than those of controls. This was particularly true for the CD4+ T cells. We conclude that FcR gamma can replace the functions of zeta in T cell development in vivo but that TCR/CD3 complexes associated with FcR gamma rather than zeta are less well expressed on cells. Also, these results revealed a difference in the regulation of expression of the TCR/CD3 complex on CD4+ and CD8+ T cells.  相似文献   

7.
8.
The T cell antigen receptor (TCR) transduces signals that mediate different responses depending on the stage of development of the T cell and the nature of the ligand it engages. The presence of multiple signal transducing subunits (CD3-gamma-delta,-epsilon and zeta chain) suggests the potential to control these responses by altering the subunit composition of the TCR. zeta chain represents an especially important signalling molecule as it contains multiple signalling motifs within its cytoplasmic tail. The generation and analysis of zeta deficient (zeta-/-) and zeta-transgenic mice has provided insight into the role of zeta as well as the CD3 subunits in TCR surface expression, T cell activation and thymocyte development. Herein, we discuss the results from such experiments which suggest distinct roles for zeta chain and the CD3 components at different stages of T cell development.  相似文献   

9.
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

10.
Activation-induced cell death (AICD) occurs primarily in recently activated T cells after a second TCR triggering. Since a threshold in the activation status may be critical for AICD, it is likely that the CD3 ITAM, docking sites for tyrosine kinases, regulate AICD. A 'threshold model' for AICD was tested by using two targeted mutant mouse strains lacking either the zeta chain (CD3zeta-/-) or the ITAM of the zeta chain (CD3zeta-/-:Tgzetadelta67-150). Although the T cells from the CD3zeta-/- mice express extremely low levels of surface TCR, a subpopulation (approximately 18%) of activated T cells could be induced to express TCR/FcepsilonRI gamma by using a powerful polyclonal activation protocol. These activated TCR/FcRI gamma T cells were capable of undergoing AICD, but its induction required 10 times as much anti-CD3epsilon mAb as that required for AICD of wild-type T cells. Thus, the intensity of AICD correlated with the level of CD3 expression and was less efficient with activated, CD3zeta(-/-)-derived T cells. By contrast, AICD of T cells from the CD3zeta-/-:Tgzetadelta67-150 mice could be induced with low doses of anti-CD3epsilon mAb and the extent of AICD was comparable to T cells from wild-type mice. The AICD induced in T cells from CD3-/-, CD3zeta-/-:Tgzetadelta67-150 and normal controls was specifically inhibited by Fas-Ig fusion proteins. Our data support the 'threshold model' of AICD by demonstrating that AICD is controlled by the strength of T cell activation.  相似文献   

11.
The CD3 complex found associated with the T cell receptor (TCR) is essential for signal transduction following TCR engagement. During T cell development, TCR-mediated signalling promotes the transition from one developmental stage to the next and controls whether a thymocyte undergoes positive or negative selection. The roles of particular CD3 components in these events remain unclear. Indeed, it is unknown whether they have specialized or overlapping roles. However, the multiplicity of CD3 components and their evolutionary conservation suggest that they serve distinct functions. Here the developmental requirement for the CD3 delta chain is analyzed by generating a mouse line specifically lacking this component (delta-/- mice). Strikingly, CD3 delta is shown to be differentially required during development. In particular, CD3 delta is not needed for steps in development mediated by pre-TCR or gamma delta TCR, but is required for further development of thymocytes expressing alpha beta TCR. Absence of CD3 delta specifically blocks the thymic selection processes that mediate the transition from the double-positive to single-positive stages of development.  相似文献   

12.
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.  相似文献   

13.
The antigen-binding receptor expressed on most T lymphocytes consists of disulfide-linked clonotypic alphabeta heterodimers noncovalently associated with monomeric CD3gamma,delta,epsilon proteins and disulfide-linked zeta zeta homodimers, collectively referred to as the T cell antigen receptor (TCR) complex. Here, we examined and compared the disulfide linkage status of newly synthesized TCR proteins in murine CD4(+)CD8(+) thymocytes and splenic T cells. These studies demonstrate that CD3delta proteins exist as both monomeric and oligomeric (disulfide-linked) species that differentially assemble with CD3epsilon subunits in CD4(+)CD8(+) thymocytes and splenic T cells. Interestingly, unlike previous results on glucose trimming and TCR assembly of CD3delta proteins in splenic T cells (Van Leeuwen, J. E. M., and K. P. Kearse (1996) J. Biol. Chem. 271, 9660-9665), we found that glucose residues were not invariably removed from CD3delta glycoproteins prior to their assembly with CD3epsilon subunits in CD4(+)CD8(+) thymocytes. Finally, these studies show that calnexin associates with both monomeric and disulfide-linked CD3delta proteins in murine T cells. The data in the current report demonstrate that CD3delta proteins exist as both monomeric and disulfide-linked molecules in murine T cells that differentially associate with partner TCR chains in CD4(+)CD8(+) thymocytes and splenic T cells. These results are consistent with the concept that folding and assembly of CD3delta proteins is a function of their oxidation state.  相似文献   

14.
T lymphocytes normally express their Ag receptors in association with the CD3 proteins, which include CD3zeta. In CD3zeta eta(null) mice thymic and peripheral T lymphocytes do not express the TCR/CD3 complex on their surface due to retention in the endoplasmic reticulum of the remaining polypeptide chains. However, intestinal intraepithelial lymphocytes (iIEL) of CD3zeta eta(null) mice do express surface TCR, because the Fc epsilonRI gamma chain replaced the CD3zeta chain in the TCR/CD3 complex. Here we report that in a subset of CD8alpha alpha+ iIEL the presence of the Fc epsilonRI gamma chain could be accounted for by the surface expression of the Fc gammaRIII(CD16) complex. Because in wild-type (wt) mice only CD16+ iIEL coexpressed Fc epsilonRI gamma and CD3zeta, we concluded that the presence of Fc epsilonRI gamma was dictated by its required participation of CD16 complex. CD8alpha alpha+ iIEL bearing CD16 and B220 were also detected in the intestinal mucosa of RAG-2(null) mice from 12 days after birth onward. Two independent experimental settings were used in an attempt to demonstrate that CD16+ iIEL matured into CD16- T cells. First, in the RAG-2(null) mice, iIEL responded to in vivo administration of an anti-CD3epsilon mAb by progression to a more mature stage of development, characterized by a loss of CD16 and B220. Secondly, a conversion to CD16- iIEL occurred upon transfer of wt CD16+ iIEL into RAG-2(null) mice. We conclude from these experiments that in both RAG-2(null) and wt mice, a precursor/progeny relationship may exists between CD16+ B220+ CD8alpha alpha+ and CD16- B220- CD8alpha alpha+ iIEL.  相似文献   

15.
The T cell antigen receptor (TCR).CD3 complex contains several distinct but related signal transduction modules termed "Reth motifs": one each in the cytoplasmic domains of CD3-gamma, -delta, and -epsilon chains and three in the CD3-zeta polypeptide (zeta A, zeta B, and zeta C). Cross-linking of individual motifs expressed in chimeric molecules leads to early and late T cell activation events. Although the activated T cell receptor associates with nonreceptor tyrosine kinases, the sites of interaction with kinases and other potential effector molecules have not been fully mapped. Here we show that phosphatidylinositol 3-kinase (PI 3-kinase) preferentially associated with the zeta chain membrane proximal motif zeta A. Maximal PI 3-kinase/zeta A association occurred following TCR.CD3 activation and was dependent upon phosphorylation of both tyrosine residues in zeta A. The association of PI 3-kinase was specific for zeta A and could be ranked zeta A > zeta C > zeta B. Phosphorylation of the zeta A motif on tyrosine residues occurred in response to TCR.CD3 cross-linking in vivo. These results indicate that T cell activation leads to assembly of an intracellular signaling complex: recruitment of a tyrosine kinase, phosphorylation of zeta A, and association of PI 3-kinase. These data also support a model in which different Reth motifs of the TCR.CD3 complex recruit distinct signal transduction molecules. Thus, the subdomains of the T cell antigen receptor zeta chain may serve different roles during T cell maturation and antigen-driven activation.  相似文献   

16.
17.
The proportion of CD4- CD8- double-negative (DN) alpha beta T cells is increased both in the thymus and in peripheral lymphoid organs of TCR alpha chain-transgenic mice. In this report we have characterized this T cell population to elucidate its relationship to alpha beta and gamma delta T cells. We show that the transgenic DN cells are phenotypically similar to gamma delta T cells but distinct from DN NK T cells. The precursors of DN cells have neither rearranged endogenous TCR alpha genes nor been negatively selected by the MIsa antigen, suggesting that they originate from a differentiation stage before the onset of TCR alpha chain rearrangements and CD4/CD8 gene expression. Neither in-frame V delta D delta J delta nor V gamma J gamma rearrangements are over-represented in this population. However, since peripheral gamma delta T cells with functional TCR beta gene rearrangements have been depleted in the transgenics, we propose that the transgenic DN population, at least partially, originates from the precursors of those cells. The present data lend support to the view that maturation signals to gamma delta lineage-committed precursors can be delivered via TCR alpha beta heterodimers.  相似文献   

18.
The pre-T cell receptor (TCR) associates with CD3-transducing subunits and triggers the selective expansion and maturation of T cell precursors expressing a TCR-beta chain. Recent experiments in pre-Talpha chain-deficient mice have suggested that the pre-TCR may not be required for signaling allelic exclusion at the TCR-beta locus. Using CD3-epsilon- and CD3-zeta/eta-deficient mice harboring a productively rearranged TCR-beta transgene, we showed that the CD3-gammadeltaepsilon and CD3-zeta/eta modules, and by inference the pre-TCR/CD3 complex, are each essential for the establishment of allelic exclusion at the endogenous TCR-beta locus. Furthermore, using mutant mice lacking both the CD3-epsilon and CD3-zeta/eta genes, we established that the CD3 gene products are dispensable for the onset of V to (D)J recombination (V, variable; D, diversity; J, joining) at the TCR-beta, TCR-gamma, and TCR-delta loci. Thus, the CD3 components are differentially involved in the sequential events that make the TCR-beta locus first accessible to, and later insulated from, the action of the V(D)J recombinase.  相似文献   

19.
While little is known about their activation requirements and function, the intraepithelial T cells of the murine vagina express TCR complexes in which the antigen recognition components and the signaling components have unusual features. These vaginal T cells express an invariant V gamma 4/V delta 1 TCR and appear to be the only intraepithelial gamma delta T cells that exclusively use FcR gamma chains in their TCR complex. To further characterize the vaginal gamma delta T cells we isolated them from normal mice and from mice injected systemically with an activation-inducing dose of anti-TCR mAb. The isolated gamma delta T cells were examined by flow cytometry for their surface expression of a panel of adhesion, proteins, activation antigens and cellular interaction molecules (CD44, CD62L, CD45RB, LFA-1, CD2 and CD28). The patterns of expression observed indicate that the vaginal gamma delta T cells of normal mice show the phenotype of effector T cells. The adhesion/co-stimulatory molecules CD28 and CD2 were not detected on vaginal gamma delta T cells, an interesting finding since the absence of CD2 from other T cells has been suggested to result in anergy. However, vaginal gamma delta T cells are responsive to TCR-mediated signals since injection of normal mice with pan-anti-TCR antibody or stimulating anti-gamma delta TCR antibody resulted in an increase in cell number and increased expression of transferrin and IL-2 receptors. These results indicate that vaginal gamma delta T cells might utilize other co-stimulatory molecules, if any, in connection with TCR-induced activation and differentiation. While the physiological function of vaginal gamma delta T cells remains unknown, the expression of an invariant V gamma 4/V delta 1 TCR, their exclusive use of gamma chain homodimers in their TCR, and the absence of CD2 and CD28 co-stimulatory molecules are a novel combination of properties that suggests specialized functional properties. Although vaginal gamma delta T cells share some features in common with gamma delta T cells that reside in other epithelial tissues, such as skin and intestine, the present studies provide additional evidence that vaginal gamma delta T cells are a highly specialized and distinct T cell population.  相似文献   

20.
Surface expression of the T cell antigen receptor (TCR) in mature T cells requires the association of a variable heterodimer (alpha.beta or gamma.delta) with six invariant CD3 polypeptides (gamma, delta, epsilon-epsilon, zeta-zeta, or zeta-eta). We described here that deletion of the cytoplasmic tail polypeptide sequence (Lys-Lys-Lys-Asn-Ser) of TCR beta-chain (beta CT) results in expression of the truncated beta-chain on the surface of a mature T cell hybridoma line, in the absence of TCR-alpha, as a glycophosphatidylinositol (GPI)-anchored monomeric polypeptide. The GPI-anchored TCR-beta CT is not associated with CD3-epsilon and is incapable of conventional signal transduction. Association with TCR-alpha prevents beta CT from GPI-linkage formation. The alpha beta CT heterodimer binds the CD3 polypeptides, and the resultant TCR alpha beta CT/CD3 complex is capable of signal transduction. Our data show that a signal sequence for GPI-linkage formation is present in TCR-beta, and this alternative membrane anchoring mechanism can be utilized by beta-chain polypeptide lacking the CT sequence. We conclude therefore that in the absence of TCR-alpha expression, the beta-chain CT sequence plays an essential function in hindering GPI-linkage formation, thereby preventing escape of incompletely assembled TCR beta-chain to the cell surface of mature T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号