首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the search for new and effective treatments of breast and prostate cancer, a series of hybrid compounds based on tamoxifen, estrogens, and artemisinin were successfully synthesized and analyzed for their in vitro activities against human prostate (PC-3) and breast cancer (MCF-7) cell lines. Most of the hybrid compounds exhibit a strong anticancer activity against both cancer cell lines – for example, EC50 (PC-3) down to 1.07 μM, and EC50 (MCF-7) down to 2.08 μM – thus showing higher activities than their parent compounds 4-hydroxytamoxifen (afimoxifene, 7 ; EC50=75.1 (PC-3) and 19.3 μM (MCF-7)), dihydroartemisinin ( 2 ; EC50=263.6 (PC-3) and 49.3 μM (MCF-7)), and artesunic acid ( 3 ; EC50=195.1 (PC-3) and 32.0 μM (MCF-7)). The most potent compounds were the estrogen-artemisinin hybrids 27 and 28 (EC50=1.18 and 1.07 μM, respectively) against prostate cancer, and hybrid 23 (EC50=2.08 μM) against breast cancer. These findings demonstrate the high potential of hybridization of artemisinin and estrogens to further improve their anticancer activities and to produce synergistic effects between linked pharmacophores.  相似文献   

2.
Tamoxifen resistance remains to be a huge obstacle in the treatment of hormone-dependent breast cancer, and this therefore highlights the dire need to explore the underlying mechanisms. The epithelial-mesenchymal transition (EMT) is a molecular process through which an epithelial cell transfers into a mesenchymal phenotype. Roles of EMT in embryo development, cancer invasion and metastasis have been extensively reported. Herein, we established tamoxifen-resistant MCF-7/TR breast cancer cells and showed that MCF-7/TR cells underwent EMT driven by enhanced endogenous TGF-β/Smad signaling. Ectopic supplement of TGF-β promoted in MCF-7 cells a mesenchymal and resistant phenotype. In parallel, we demonstrated that resveratrol was capable of synergizing with tamoxifen and triggering apoptosis in MCF-7/TR cells. Further Western blot analysis indicated that the chemosensitizing effects of resveratrol were conferred with its modulation on endogenous TGF-β production and Smad phosphorylation. In particular, 50 μM resveratrol had minor effects on MCF-7/TR cell proliferation, but could significantly attenuate endogenous TGF-β production and the Smad pathway, ultimately leading to reversion of EMT. Collectively, our study highlighted distinct roles of EMT in tamoxifen resistance and resveratrol as a potential agent to overcome acquired tamoxifen resistance. The molecular mechanism of resveratrol chemosensitizing effects is, at least in part, TGF-β/Smad-dependent.  相似文献   

3.
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.  相似文献   

4.
Biological therapies are new additions to breast cancer treatment. Among biological compounds, β-carotene has been reported to have immune modulatory effects, in particular, enhancement of natural killer cell activity and tumor necrosis factor-alpha production by macrophages. The objective of this study was to investigate the effect of palm carotene supplementation on the tumorigenicity of MCF-7 human breast cancer cells injected into athymic nude mice and to explore the mechanism by which palm carotenes suppress tumorigenesis. Forty-eight 4-wk-old mice were injected with 1×106 MCF-7 cells into their mammary fat pad. The experimental group was supplemented with palm carotene whereas the control group was not. Significant differences were observed in tumor incidence (P<0.001) and tumor surface area and metastasis to lung (P<0.005) between the two groups. Natural killer (NK) cells and B-lymphocytes in the peripheral blood of carotene-supplemented mice were significantly increased (P<0.05 and P<0.001, respectively) compared with controls. These results suggest that palm oil carotene is able to modulate the immune system by increasing peripheral blood NK cells and B-lymphocytes and suppress the growth of MCF-7 human breast cancer cells.  相似文献   

5.
Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells’ ABC-mediated chemoresistance.  相似文献   

6.
7.
Docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) have been shown to possess anti-carcinogenic properties in mammary cancers, both in vitro and in vivo. The objective of this study was to investigate the effect of treating three different breast cancer cell lines with DHA or EPA on cellular growth, chemotherapy efficacy, and CD95 expression and localization in the cell. MDA-MB-231, MCF-7 and SKBr-3 cells were incubated with EPA or DHA with or without chemotherapy agents [doxorubicin (dox), Herceptin]. Cell growth was assessed by WST-1 assay and CD95 expression was investigated using flow cytometry, Western blotting and confocal microscopy. DHA and EPA inhibited the growth of all three breast cancer cell lines in a dose-dependent fashion (P?<?0.05). DHA, and to a lesser extent EPA, induced the movement and raft clustering of CD95 in the cell membrane (via confocal microscopy) and the surface expression (via flow cytometry) in MDA-MB-231 cells. Neither fatty acid altered the growth/metabolic activity of the non-transformed MCF-12A breast cell line. Pre-treatment with DHA, but not EPA, improved the efficacy of dox in estrogen receptor negative MDA-MB-231 cells (P?<?0.05), but not in the other two cell lines. Pre-treating cells with DHA increased CD95 surface expression (threefold) and the plasma membrane raft content of CD95 (2fold) and FADD (>4-fold) after dox treatment, compared to dox treatment alone (P?<?0.05). This study demonstrated that pre-treatment of estrogen receptor negative MDA-MB-231 cells with DHA increased the anti-cancer effects of dox and presents evidence to suggest that this may be mediated in part by CD95-induced apoptosis.  相似文献   

8.
Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.  相似文献   

9.
Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.  相似文献   

10.
In order to explore the synergistic mechanisms of combinatorial treatment using curcumin and mitomycin C (MMC) for breast cancer, MCF-7 breast cancer xenografts were conducted to observe the synergistic effect of combinatorial treatment using curcumin and MMC at various dosages. The synergistic mechanisms of combinatorial treatment using curcumin and MMC on the inhibition of tumor growth were explored by differential gene expression profile, gene ontology (GO), ingenuity pathway analysis (IPA) and Signal–Net network analysis. The expression levels of selected genes identified by cDNA microarray expression profiling were validated by quantitative RT-PCR (qRT-PCR) and Western blot analysis. Effect of combinatorial treatment on the inhibition of cell growth was observed by MTT assay. Apoptosis was detected by flow cytometric analysis and Hoechst 33258 staining. The combinatorial treatment of 100 mg/kg curcumin and 1.5 mg/kg MMC revealed synergistic inhibition on tumor growth. Among 1501 differentially expressed genes, the expression of 25 genes exhibited an obvious change and a significant difference in 27 signal pathways was observed (p < 0.05). In addition, Mapk1 (ERK) and Mapk14 (MAPK p38) had more cross-interactions with other genes and revealed an increase in expression by 8.14- and 11.84-fold, respectively during the combinatorial treatment by curcumin and MMC when compared with the control. Moreover, curcumin can synergistically improve tumoricidal effect of MMC in another human breast cancer MDA-MB-231 cells. Apoptosis was significantly induced by the combinatorial treatment (p < 0.05) and significantly inhibited by ERK inhibitor (PD98059) in MCF-7 cells (p < 0.05). The synergistic effect of combinatorial treatment by curcumin and MMC on the induction of apoptosis in breast cancer cells may be via the ERK pathway.  相似文献   

11.
目的探讨氨氯地平对人乳腺癌细胞MCF-7细胞周期及周期蛋白表达的影响及其调控机制。方法以不同浓度的氨氯地平处理对数生长期的MCF-7细胞,MTT法检测细胞增殖水平;流式细胞仪分析细胞周期;免疫细胞化学法检测细胞周期蛋白cyclinD1、p21和p53的表达。结果氨氯地平呈剂量和时间依赖性抑制MCF-7细胞增殖,IC50为14.439μmol/L;经7.220μmol/L(0.5IC5)0、14.439μmol/L(1IC5)0和28.880μmol/L(2IC50)氨氯地平处理48h,G0/G1期细胞比例较对照组明显增高;经7.220μmol/L氨氯地平处理48h,MCF-7细胞中cyclinD1蛋白表达降低,p21和p53蛋白表达升高。结论氨氯地平对MCF-7细胞的增殖具有抑制作用,此作用与使细胞阻滞于G1期有关,其机制与调控细胞周期相关蛋白cyclinD1、p21和p53的表达有关。  相似文献   

12.
It was established that the synthesis of hybrid molecules containing a thiazolidinone and a (2Z)-2-chloro-3-(4-nitrophenyl)prop-2-ene structural fragments is an effective approach for the design of potential anticancer agents. Given the results of the previous SAR-analysis, the aim of the study was to synthesize a novel 4-thiazolidinone derivative Les-3331 and investigate its molecular mechanism of action in MCF-7 and MDA-MB-231 breast cancer cells. The cytotoxic properties and antiproliferative potential of Les-3331 were determined. The effect of the tested compound on apoptosis induction and mitochondrial membrane potential was checked by flow cytometry. ELISA was used to determine caspase-8 and caspase-9, LC3A, LC3B, Beclin-1, and topoisomerase II concentration. Additionally, PAMPA, in silico or in vitro prediction of metabolism, CYP3A4/2D6 inhibition, and an Ames test were performed. Les-3331 possesses high cytotoxic and antiproliferative activity in MCF-7 and MDA-MB-231 breast cancer cells. Its molecular mechanism of action is associated with apoptosis induction, decreased mitochondrial membrane potential, and increased caspase-9 and caspase-8 concentrations. Les-3331 decreased LC3A, LC3B, and Beclin-1 concentration in tested cell lines. Topoisomerase II concentration was also lowered. The most probable metabolic pathways and no DDIs risk of Les-3331 were confirmed in in vitro assays. Our studies confirmed that a novel 4-thiazolidinone derivative represents promising anti-breast cancer activity.  相似文献   

13.
目的观察乌斯他丁(UTI)和环磷酰胺(CTX)对体外培养的乳腺癌细胞MCF-7(雌激素受体阳性)和乳腺癌细胞MDA-MB-231(雌激素受体阴性)增殖、侵袭及基质金属蛋白酶-9(MMP-9)表达的影响。方法将体外培养的乳腺癌细胞MCF-7和MDA-MB-231分别分为8组:对照组、UTI高、中、低剂量组、CTX组、CTX+UTI高、中、低剂量组,分别用相应药物处理。采用MTT法检测细胞的增殖能力;流式细胞仪分析细胞周期;RT-PCR检测细胞MMP-9基因的表达;Boyden小室侵袭试验检测两种细胞的浸袭能力。结果UTI可明显抑制MCF-7和MDA-MB-231细胞的增殖,使细胞周期阻滞在G2/M期,并能使2株细胞中MMP-9基因的转录水平下降,细胞的增殖侵袭能力降低。CTX与UTI联合应用,其作用效果优于CTX单独使用。结论UTI能增强CTX诱导的乳腺癌细胞MCF-7和MDA-MB-231的增殖抑制作用,二者具有协同效应。其机制可能与UTI降低细胞MMP-9基因的表达等有关。  相似文献   

14.
1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR.  相似文献   

15.
The overall five-year survival rate for patients with esophageal cancer is low (15 to 25%) because of the poor prognosis at earlier stages. Rutaecarpine (RTP) is a bioalkaloid found in the traditional Chinese herb Evodia rutaecarpa and has been shown to exhibit anti-proliferative effect on tumor cells. However, the mechanisms by which RTP confer these effects and its importance in esophageal squamous cell carcinoma treatment remain unclear. Thus, in the present study, we first incubated human esophageal squamous cell carcinoma cell line, CE81T/VGH, with RTP to evaluate RTP’s effects on tumor cell growth and apoptosis. We also performed a xenograft study to confirm the in vitro findings. Furthermore, we determined the expression of p53, Bax, bcl-2, caspase-3, caspase-9, and PCNA in CE81T/VGH cells or the tumor tissues to investigate the possible mechanisms. All the effects of TRP were compared with that of cisplatin. The results showed that RTP significantly inhibits CE81T/VGH cell growth, promotes arrest of cells in the G2/M phase, and induces apoptosis. Consistently, the in vivo study showed that tumor size, tumor weight, and proliferating cell nuclear antigen protein expression in tumor tissue are significantly reduced in the high-dose RTP treatment group. Furthermore, the in vitro and in vivo studies showed that RTP increases the expression of p53 and Bax proteins, while inhibiting the expression of Bcl-2 in cancer cells. In addition, RTP significantly increases the expression of cleaved caspase-9 and cleaved caspase-3 proteins in tumor tissues in mice. These results suggest that RTP may trigger the apoptosis and inhibit growth in CE81T/VGH cells by the mechanisms associated with the regulation of the expression of p53, Bax, Bcl-2, as well as caspase-9 and caspase-3.  相似文献   

16.
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.  相似文献   

17.
Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10), may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin)/TXT (docetaxel) and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.  相似文献   

18.
The growth modulating effects of the ovarian steroid hormones 17β-estradiol (E2) and progesterone (PRG) on endocrine-responsive target tissues are well established. In hormone-receptor-positive breast cancer, E2 functions as a potent growth promoter, while the function of PRG is less defined. In the hormone-receptor-positive Luminal A and Luminal B molecular subtypes of clinical breast cancer, conventional endocrine therapy predominantly targets estrogen receptor function and estrogen biosynthesis and/or growth factor receptors. These therapeutic options are associated with systemic toxicity, acquired tumor resistance, and the emergence of drug-resistant cancer stem cells, facilitating the progression of therapy-resistant disease. The limitations of targeted endocrine therapy emphasize the identification of nontoxic testable alternatives. In the human breast, carcinoma-derived hormone-receptor-positive MCF-7 model treatment with E2 within the physiological concentration range of 1 nM to 20 nM induces progressive growth, upregulated cell cycle progression, and downregulated cellular apoptosis. In contrast, treatment with PRG at the equimolar concentration range exhibits dose-dependent growth inhibition, downregulated cell-cycle progression, and upregulated cellular apoptosis. Nontoxic nutritional herbs at their respective maximum cytostatic concentrations (IC90) effectively increase the E2 metabolite ratio in favor of the anti-proliferative metabolite. The long-term exposure to the selective estrogen-receptor modulator tamoxifen selects a drug-resistant phenotype, exhibiting increased expressions of stem cell markers. The present review discusses the published evidence relevant to hormone metabolism, growth modulation by hormone metabolites, drug-resistant stem cells, and growth-inhibitory efficacy of nutritional herbs. Collectively, this evidence provides proof of the concept for future research directions that are focused on novel therapeutic options for endocrine therapy-resistant breast cancer that may operate via E2- and/or PRG-mediated growth regulation.  相似文献   

19.
In vitro work suggests that conjugated linoleic acid (CLA) isomers (c9,t11 and t10,c12) are cytotoxic to human breast cancer cells, however the mechanism remains unknown. Using human MCF-7 breast cancer cells, we examined the effects of c9,t11 and t10,c12 CLA compared to oleic acid (OA), linoleic acid (LA), or untreated cells on cell membrane phospholipid composition, cell survival, and the insulin-like growth factor-I (IGF-I) and the downstream insulin receptor substrate-1 (IRS-1). Both CLA isomers were incorporated into membrane phospholipids (p < 0.05). Compared to untreated cells, c9,t11 or t10,c12 CLA significantly reduced the metabolic activity of IGF-I stimulated MCF-7 cells, increased lactate dehydrogenase (LDH) release, and decreased cellular concentrations of the IGF-I receptor (IGF-IR) and insulin receptor substrate-1 (p < 0.05). Incubation with t10,c12 CLA also reduced the levels of phosphorylated IGF-1R. The effects on all of these measures were greater (p < 0.05) for t10,c12 CLA compared to c9,t11 CLA. There were few differences between LA-treated and c9,t11 CLA-treated cells, whereas cellular metabolic activity, LDH release, and IGF-IR concentrations differed between t10,c12 CLA-treated and LA-treated cells (p < 0.05). OA stimulated growth compared to the untreated condition (p < 0.05). In summary, this study demonstrated that the t10,c12 CLA isomer inhibits growth of MCF-7 cells and suggested that this may be mediated through incorporation into cellular phospholipids and interference with the function of IGF-I and related signaling proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号