首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental verification of a reactor safety analysis code, SIMMER-III, was undertaken for transient behaviors of large-scale bubbles with condensation. The present study aimed to verify the code for numerical simulations of relatively short-time-scale multi-phase, multi-component hydraulic problems. Among these, vaporization and condensation, or simultaneous heat and mass transfer, play important roles. In this study, a series of transient bubble behavior experiments dedicated to condensation phenomena with noncondensable gases was carried out. In the experiments, a pressurized mixture of noncondensable gas and steam was discharged as a large-scale single bubble into a cylindrical pool filled with stagnant subcooled water. The concentration of noncondensable gas was taken as an experimental parameter as was the species of noncondensable gas. The characteristics of transient behavior of large-scale bubbles with condensation observed in the experiments were estimated through experimental analyses using SIMMER-III. In the experiments with steam condensation, dispersion of the gas mixture discharged into the liquid pool was accompanied by vapor condensation at the bubble surface. SIMMER-III simulations suggested that the noncondensable gas had a less inhibiting effect on the condensation of large-scale bubbles. This is a different characteristic to that of the quasi-steady condensation of small-scale bubbles observed in our previous experiments.  相似文献   

2.
SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas–liquid flows, such as an air–water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking.

It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka–Ishii’s correlation has improved the accuracy of SIMMER-III for gas–liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed.

Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios.  相似文献   


3.
It is believed that the numerical simulation of thermal-hydraulic phenomena of multiphase, multicomponent flows in a reactor core is essential to investigate core disruptive accidents (CDAs) of liquid-metal fast reactors. A new multicomponent vaporization/condensation (V/C) model was developed to provide a generalized model for a fast reactor safety analysis code SIMMER-III, which analyzes relatively short-time-scale phenomena relevant to accident sequences of CDAs. The model characterizes the V/C process associated with phase transition through heat-transfer and mass-diffusion limited models to follow the time evolution of the reactor core under CDA conditions. The heat-transfer limited model describes the nonequilibrium phase-transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of noncondensable gases and multicomponent mixture on V/C processes. Verification of the model and method employed in the multicomponent V/C model of SIMMER-III was performed successfully by analyzing a series of multicomponent phase-transition experiments.  相似文献   

4.
The molten salt reactor (MSR), which is one of the ‘Generation IV’ concepts, can be used for transmutation, and production of electricity, hydrogen and fissile fuels. In this study, a single-liquid-fueled MSR is designed for conceptual research, in which no solid material is present in the core as moderator, except for the external reflector. The fuel salt flow makes the MSR neutronics different from that of conventional reactors using solid fuels, and couples the flow and heat transfer strongly. Therefore, it is necessary to study the core characteristics with due attention to the coupling among flow, heat transfer and neutronics. The standard turbulent model is adopted to establish the flow and heat transfer model, while the diffusion theory is used for the neutronics model, which consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six groups of delayed neutron precursors. These two models which are coupled through the temperature and heat source are coded in a microcomputer program. The distributions of the velocity, temperature, neutron fluxes, and delayed neutron precursors under the rated condition are obtained. In addition, the effects of the inflow temperature, inflow velocity, and the fuel salt residence time out of the core are discussed in detail. The results provide some valuable information for the research and design of the new generation molten salt reactors.  相似文献   

5.
6.
Complex phenomena such as phase transitions and heat transfers in multiphase, multicomponent flows were modeled in the fluid-dynamics portion of SIMMER-III, which was developed to appropriately assess core disruptive accidents (CDAs) in liquid–metal fast reactors (LMFRs). A new multicomponent vaporization/condensation (V/C) model was developed and introduced to SIMMER-III by the authors. In the present study, a new series of multi-bubble condensation experiments was performed to demonstrate that SIMMER-III with the present V/C model is practically applicable to multicomponent, multiphase flow systems with phase transition. In the experiments, bubble diameters and void fractions were quantified from visualization images using original image-processing techniques. Comparing SIMMER-III predictions with experimental data, it was confirmed that SIMMER-III with the proposed V/C model could suitably represent the effects of noncondensable components on the condensation process in multi-bubble systems. This work has improved the reliability of SIMMER-III with regard to multicomponent phase-transition phenomena.  相似文献   

7.
Transient analyses for Preliminary Design Studies of an Experimental Accelerator Driven System (PDS-XADS) were performed with the reactor safety analysis code SIMMER-III, which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors so as to describe the XADS specifics such as subcritical core, strong external neutron source and lead–bismuth–eutectic (LBE) coolant. As transient scenarios, the following cases were analyzed in accordance with the PDS-XADS program: spurious beam trip (BT), unprotected beam overpower (UBOP), unprotected transient overpower (UTOP), unprotected loss of flow (ULOF) and unprotected blockage (UBL) in a single fuel assembly. In addition, to cover some core-melt situations and investigate the potential for recriticalities, so-called snap-shot analyses with ad hoc postulated severe blockage conditions were also investigated.The simulation results for BT and UBOP showed that immediate fuel damage might not take place under short-time beam interruption or a 100% increase of the external neutron source. Concerning UTOP, it was found that a reactivity jump of 1 $ would not lead to damage of the fuel and the cladding. The ULOF simulation showed that the remaining natural convection of the coolant would prevent the cladding from disruptions. In the simulation of UBL in a single fuel assembly, it was shown that no cladding failure might be expected, due to the radial heat transfer and the coolant flow in the hexcan gap. Under an artificial suppression of the radial heat transfer for this UBL case, a pin failure occurred in the simulation but subsequent fuel sweep-out into the upper plenum region would bring a reactivity reduction and no power excursion. The severe accident simulations starting from postulated blockage above an already disrupted core showed that a severe recriticality could be avoided by the fuel sweep-out into the dummy-assembly or hexcan gap regions.The present simulation results showed that the current PDS-XADS design has a remarkable resistance against severe transient scenarios even in core-degradation conditions.  相似文献   

8.
《核技术(英文版)》2016,(3):196-202
The Molten Salt Reactor(MSR) is one of the six advanced reactor nuclear energy systems for further research and development selected by Generation IV International Forum(GIF),which is distinguished by its core in which the fuel is dissolved in molten fluoride salt.Because fuel flow in the primary loop,the depletion of MSR is different from that of solid-fuel reactors.In this paper,an MCNP5 and ORIGEN2 Coupled Burnup(MOCBurn) code for MSR is developed under the MATLAB platform.Some new methods and novel arrangements are used to make it suitable for fuel flow in the MSR.To consider the fuel convection and diffusion in the primary loop of MSR,fuel mixing calculation is carried out after each burnup time step.Modeling function for geometry with repeat structures is implicated for reactor analysis with complex structures.Calculation for a high-burnup reactor pin cell benchmark is performed using the MOCBurn code.Results of depletion study show that the MOCBurn code is suitable for the traditional solid-fuel reactors.A preliminary study of the fuel mixture effect in MSR is also carried out.  相似文献   

9.
For the transition phase analysis of core disruptive accidents, the development of a three-dimensional reactor safety analysis code, SIMMER-IV, has been carried out based on the technology of the two-dimensional SIMMER-III code. The world first application of SIMMER-IV to a small-sized sodium-cooled fast reactor has also been attempted to clarify event progression in the early stage of the transition phase. This SIMMER-IV calculation is compared to the two-dimensional case calculated by SIMMER-III, neglecting the presence of control rod guide tubes. The present analysis with the three-dimensional representation suggests that the conventional scenario leading to rather early high-mobility fuel pool formation is unrealistic and the degraded core tends to keep low mobility in the early stage of transition phase.  相似文献   

10.
Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases.  相似文献   

11.
《Annals of Nuclear Energy》1999,26(11):977-982
The distorted-buckling method, proposed by us previously, allows the benchmarking of a diffusion code by comparing it with an analytic model in either 2 or 3 dimensions. Here, the method is applied to the case of a cylindrical TRIGA-type reactor to compare the fluxes predicted by an analytic model of the core and reflector, to those predicted by the code CITATION. The match is everywhere excellent. ©  相似文献   

12.
The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.  相似文献   

13.
Thermohydraulic calculations of isolated and communicating cells of a rod bundle were performed by the channel method for CANDU-X fuel assemblies and by a three-dimensional method. It was established that in solving the problem for the tightest cell in the case q = const the azimuthal nonuniformity of the temperature was found to decrease by 77°C but it too was inadmissibly large. The temperature distribution along the surface of a fuel element in the case q = const was found to be different from the solution of the adjoint problem. A region with elevated coolant temperature, impeding heat exchange between two neighboring cells, was found between two adjoining cells. It was found that to evaluate computational reliability an experimental study must be performed on rod assemblies with supercritical coolant parameters.  相似文献   

14.
The neutron kinetics of the molten salt reactor is significantly influenced by the fuel salt flow, which leads to the analysis methods for the conventional reactors using solid fuels not being applicable for the molten salt reactors. In this study, a neutron kinetic model considering the fuel salt flow is established based on the neutron diffusion theory, which consists of two-group neutron diffusion equations for the fast and thermal neutron fluxes and six-group balance equations for delayed neutron precursors. The temperature feedback on the neutron kinetics is considered by introducing a heat transfer model in the core, in which the group constants which are dependent on the temperature are calculated by the code DRAGON. The mathematical equations are discretized and numerically calculated by developing a code, in which the fully implicit scheme is adopted for the time-dependent terms, and the power law scheme is for the convection–diffusion terms. The neutron kinetics is conducted during three transient conditions including the rods drop transient, the pump coastdown transient and the inlet temperature drop transient. The relative power changes and the distributions of the temperature, neutron fluxes and delayed neutron precursors under these three different transient conditions are obtained in the study. The results provide some valuable information for the research and design of this new generation reactor.  相似文献   

15.
The molten salt reactor (MSR) is an attractive breeder reactor. A graphite-moderated MSR can reach breeding because of the online salt processing and refueling. These features give difficulties when the breeding gain (BG) of the MSR is evaluated. The inventory of the core and external stockpiles have to be treated separately in order to quantify the breeding performance of the reactor. In this paper, an improved BG definition is given and it is compared with definitions used earlier. The improved definition was used in an optimization study of the graphite – salt lattice of the core. The aim of the optimization is a passively safe, self-breeder reactor. The fuel channel diameter, graphite volume and thorium concentration were varied while the temperature feedback coefficient of the core, BG – as defined in the paper – and the lifetime of the graphite were calculated. There is a small range of lattices which provide both negative temperature feedback and breeding. Furthermore, breeding is possible only at low power densities in case of the salt processing efficiencies set in this study. In this range of power the lifetime of the graphite is between 12 and 20 years.  相似文献   

16.
In order to perform the parametric survey for an accelerator-driven system (ADS) core with the subcriticality adjustment mechanism, a new calculation code system, ADS3D, was developed on MARBLE which is a comprehensive and versatile framework for reactor analysis. The application of ADS3D was also demonstrated on the neutronics design of ADS operated by control rod (CR) movement. Through the neutronics calculation, it was shown that the maximum proton beam current was decreased from 20.5 to 11.6 mA due to the switch from beam-operated to CR-operated core.  相似文献   

17.
Development of a safety analysis code for molten salt reactors   总被引:1,自引:0,他引:1  
The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.  相似文献   

18.
In order to efficiently use new features of supercomputers, production codes, usually written 10 – 20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantional speedups in the execution times were obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a multiprocessor IBM 3090.  相似文献   

19.
In order to efficiently use new features of supercomputers, production codes, usually written 10 – 20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantional speedups in the execution times were obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a multiprocessor IBM 3090.  相似文献   

20.
The reasons for large discrepancies between the computed and measured values of the efficiency of control rods observed during start-up experiments on the Russian pressurized water type VVER reactors are discussed. The numerical simulation of the measurements including the prediction of the ex-core detector signals was used to resolve the discrepancies. The time and space dependent neutron flux in the core during these measurements have been calculated by the KIKO3D nodal kinetic code. For calculating the ionization chamber signals the Green function technique has been applied. The Green functions of ionization chambers have been evaluated via solving the neutron transport equation in the reflector regions with the MCNP Monte Carlo code. The detector signals have been calculated and compared with measured ones using the inverse point kinetics transformation. Large number of asymmetric rod drop measurements (with one rod stuck) and some differential rod worth measurements from the Zero Power Physics Tests were provided by the Paks NPP for validation. The experiments cover different fuels (without and with enrichment zoning) and loading patterns. The intermediate range ionization chambers have been used during the scram measurements. The newly developed method provides fairly sufficient match of measured and calculated results. The time behavior of the detector readings observed in the measurements are described by the code in a consistent manner.As a further application the uncertainty of scram rod worth of the KARATE-440 code system was determined by static calculations and subsequent simulation of rod drop with the KIKO3D code. The calculated results were compared to measurements carried out by the Paks NPP. The uncertainty of scram rod worth is established by statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号