首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The scope of this paper covers a comprehensive study of the lead-free Sn-Zn-Bi solder system, on Cu, electrolytic Ni/Au and electroless Ni(P)/Au surface finishes. This includes a study of the shear properties, intermetallic compounds at the substrate-ball interface and dissolution of the under bump metallization. The Sn-8Zn-3Bi (wt.%) solder/Cu system exhibited a low shear load with thick IMCs formation at the interface. The dissolution of the Cu layer in the Sn-Zn-3Bi solder is higher than that of the other two Ni metallizations. It was found that the formation of a thick Ni-Zn intermetallic compound (IMC) layer at the solder interface of the electrolytic Ni bond pad reduced the mechanical strength of the joints during high temperature long time liquid state annealing. The solder ball shear-load for the Ni(P) system during extended reflow increased with an increase of reflow time. No spalling was noticed at the interface of the Sn-Zn-3Bi solder/Ni(P) system. Sn-8Zn-3Bi solder with electroless Ni(P) metallization appeared as a good combination in soldering technology.  相似文献   

2.
In this study, addition of Ag micro-particles with a content in the range between 0 and 4 wt.% to a Sn–Zn eutectic solder, were examined in order to understand the effect of Ag additions on the microstructural and mechanical properties as well as the thermal behavior of the composite solder formed. The shear strengths and the interfacial reactions of Sn–Zn micro-composite eutectic solders with Au/Ni/Cu ball grid array (BGA) pad metallizations were systematically investigated. Three distinct intermetallic compound (IMC) layers were formed at the solder interface of the Au/electrolytic Ni/Cu bond pads with the Sn–Zn composite alloys. The more Ag particles that were added to the Sn–Zn solder, the more Ag–Zn compound formed to thicken the uppermost IMC layer. The dissolved Ag–Zn IMCs formed in the bulk solder redeposited over the initially formed interfacial Au–Zn IMC layer, which prevented the whole IMC layer lifting-off from the pad surface. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces.  相似文献   

3.
Rare earth (RE) elements, primarily La and Ce, were doped in Sn-Zn solder to improve its properties such as wettability. The interfacial microstructure evolution and shear strength of the Sn-9Zn and Sn-9Zn-0.5RE (in wt%) solder bumps on Au/Ni/Cu under bump metallization (UBM) in a ball grid array (BGA) were investigated after thermal aging at 150 /spl deg/C for up to 1000 h. In the as-reflowed Sn-9Zn solder bump, AuSn/sub 4/ intermetallic compounds (IMCs) and Au-Zn circular IMCs formed close to the solder/UBM interface, together with the formation of a Ni-Zn-Sn ternary IMC layer of about 1 /spl mu/m in thickness. In contrast, in the as-reflowed Sn-9Zn-0.5RE solder bump, a spalled layer of Au-Zn was formed above the Ni layer. Sn-Ce-La and Sn-Zn-Ce-La phases were found near the interface at positions near the surface of the solder ball. Upon thermal aging at 150 /spl deg/C, the concentration of Zn in the Ni-Zn-Sn ternary layer of Sn-9Zn increased with aging time. For Sn-9Zn-0.5RE, the Au-Zn layer began to dissolve after 500 h of thermal aging. The shear strength of the Sn-9Zn ball was decreased after the addition of RE elements, although it was still higher than that of the Sn-37Pb and Sn-36Pb-2Ag Pb-bearing solders. The fracture mode of the Sn-9Zn system was changed from ductile to partly brittle after adding the RE elements. This is mainly due to the presence of the brittle Au-Zn layer.  相似文献   

4.
Recently, the research and development activities for replacing Pb-containing solders with Pb-free solders have been intensified due to both competitive market pressures and environmental issues. As a result of these activities, a few promising candidate solder alloys have been identified, mainly, Sn-based alloys. A key issue affecting the integrity and reliability of solder joints is the interfacial reactions between a molten solder and surface finishes in the solder joint structures. In this paper, a fundamental study of the interfacial reactions between several Pb-free candidate solders and surface finishes commonly used in printed-circuit cards is reported. The Pb-free solders investigated include Sn-3.5 Ag, Sn-3.8 Ag-0.7 Cu, and Sn-3.5 Ag-3.0 Bi. The surface finishes investigated include Cu, Au/Ni(P), Au/Pd/Ni(P), and Au/Ni (electroplated). The reaction kinetics of the dissolution of surface finishes and intermetallic compound growth have been measured as a function of reflow temperature and time. The intermetallic compounds formed during reflow reactions have been identified by SEM with energy dispersive x-ray spectroscopy.  相似文献   

5.
The tensile strengths of bulk solders and joint couples of Sn-3.5Ag-0.5Cu, Sn-3.5Ag-0.07Ni, and Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge solders and the shear strengths of ball grid array (BGA) specimens, solder-ball-attached Cu/Ni/Au metallized substrates were investigated. The tensile strength of the bulk is degraded by thermal aging. The Ni-containing solder exhibits lower tensile strength than Sn-3.5Ag-0.5Cu after thermal aging. However, the Ni-containing solder joints show greater tensile strength than the Cu/Sn-3.5Ag-0.5Cu/Cu joint. Fracture of the solder joint occurs between the intermetallic compound (IMC) and the solder. The shear strength and fracture mechanism of BGA specimens are the same regardless of solder composition.  相似文献   

6.
During the reflow process of Sn-8Zn-20In solder joints in the ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the Au and Ag thin films react with liquid solder to form γ3-AuZn4/γ-Au7Zn18 and ε-AgZn6 intermetallics, respectively. The γ3/γ intermetallic layer is prone to floating away from the solder/Ni interface, and the appearance of any interfacial intermetallics cannot be observed in the Au/Ni surface finished Sn-8Zn-20In packages during further aging treatments at 75°C and 115°C. In contrast, ε-CuZn5/γ-Cu5Zn8 intermetallics are formed at the aged Sn-8Zn-20In/Cu interface of the immersion Ag BGA packages. Bonding strengths of 3.8N and 4.0N are found in the reflowed Sn-8Zn-20In solder joints with Au/Ni/Cu and Ag/Cu pads, respectively. Aging at 75°C and 115°C gives slight increases of ball shear strength for both cases.  相似文献   

7.
Nano-sized, nonreacting, noncoarsening ZrO2 particles reinforced Sn-3.0 wt%Ag-0.5 wt%Cu composite solders were prepared by mechanically dispersing ZrO2 nano-particles into Sn-Ag-Cu solder. The interfacial morphology of unreinforced Sn-Ag-Cu solder and solder joints containing ZrO2 nano-particles with Au/Ni metallized Cu pads on ball grid array (BGA) substrates and the distribution of reinforcing particles were characterized metallographically. At their interfaces, a Sn-Ni-Cu intermetallic compound (IMC) layer was found in both unreinforced Sn-Ag-Cu and Sn-Ag-Cu solder joints containing ZrO2 nano-particles and the IMC layer thickness increased with the number of reflow cycles. In the solder ball region, AuSn4, Ag3Sn, Cu6Sn5 IMC particles and ZrO2 nano-particles were found to be uniformly distributed in the β-Sn matrix of Sn-Ag-Cu solder joints containing ZrO2 nano-particles, which resulted in an increase in the shear strength, due to a second phase dispersion strengthening mechanism. The fracture surface of unreinforced Sn-Ag-Cu solder joints exhibited a brittle fracture mode with a smooth surface while Sn-Ag-Cu solder joints containing ZrO2 nano-particles ductile failure characteristics with rough dimpled surfaces.  相似文献   

8.
The effect of a reflow process and under bump metallurgy (UBM) systems on the growth of intermetallic compounds (IMC) of the 57Bi/43Sn and 37Pb/63Sn solder bump/UBM interfaces was investigated. The selected UBM systems were sputtered Al/Ti/Cu, sputtered Al/NiV/Cu, Al/electroless Ni/immersion Au, and Al/Ti/electroless Cu. An alloy electroplating method was used for the solder bumping process. The microstructure and composition of intermetallic compound (IMC) phases and their morphologies were examined using scanning electron microscopy and X-ray diffraction. The Cu6Sn5 η'-phase IMC appeared on all Cu containing UBM cases with Pb/Sn and Bi/Sn solders and the Cu 3Sn ϵ-phase was detected only with Pb/Sn solder bumps. The Ni3Sn4 IMC was found to be the main IMC phase between Ni and solder. The Ni3Sn secondary IMC was also detected on the electroless Ni UBM with PbSn solder after ten times reflow. Through the bump shear test, Al/NiV/Cu, Al/elNi/Au, and Al/Ti/elCu UBMs showed good stability with Bi/Sn and Pb/Sn solder in terms of metallurgical aspects  相似文献   

9.
The microstructure of Sn-37Pb and Sn-8Zn-3Bi solders and the full strength of these solders with an Au/Ni/Cu pad under isothermal aging conditions were investigated. The full strengths tended to decrease as the aging temperature and time increased, regardless of the properties of the solders. The Sn-8Zn-3Bi had higher full strength than Sn-37Pb. In the Sn-37Pb solder, Ni3Sn4 compounds and irregular-shaped Pb-rich phase were embedded in a β-Sn matrix. The Ni3Sn4 compounds were observed at the interface between the solder and pad. The microstructure of the as-reflowed Sn-8Zn-3Bi solder mainly consists of the β-Sn matrix scattered with Zn-rich phase. Zinc first reacted with Au and then was transformed to the AuZn compound. With aging, Ni5Zn21 compounds were formed at the Ni layer. Finally, a Ni5Zn21 phase, divided into three layers, was formed with column-shaped grains, and the thicknesses of the layers were changed.  相似文献   

10.
The effects of plating materials (Sn-10Pb, Sn-3.5Ag, Sn-3Bi, Sn-0.7Cu, and Au/Pd/Ni) on Cu leads on quad flat package (QFP) joints using a Sn-8Zn-3Bi solder were investigated. The joints with Sn-3.5Ag plating and Sn-8Zn-3Bi solder had the slowest growth rate of interfacial reaction layers and the highest strength. The Ag dissolution into the interfacial reaction layers causes this increased strength. The Sn-Ag plating is the best plating material for Cu leads among the five kinds of plating using Sn-8Zn-3Bi solder.  相似文献   

11.
This study aims to investigate the shear and tensile impact strength of solder ball attachments. Tests were conducted on Ni-doped and non-Ni-doped Sn-0.7wt.% Cu, Sn-37wt.% Pb and Sn-3.0wt.% Ag-0.7wt.% Cu solder ball grid arrays (BGAs) placed on Cu substrates, which were as-reflowed and aged, over a wide range of displacement rates from 10 to 4000 mm/s in shear and from 1 to 400 mm/s in tensile tests. Ni additions to the Sn-0.7wt.% Cu solders has slowed the growth of the interface intermetallic compounds (IMCs) and made the IMC layer morphology smooth. As-reflowed Ni-doped Sn-0.7wt.% Cu BGA joints show superior properties at high speed shear and tensile impacts compared to the non-Ni-doped Sn-0.7wt.% Cu and Sn-3.0wt.% Ag-0.7wt.% Cu BGAs. Sn-3.0wt.% Ag-0.7wt.% Cu BGAs exhibit the least resistance in both shear and tensile tests among the four compositions of solders, which may result from the cracks in the IMC layers introduced during the reflow processes.  相似文献   

12.
The effects of a rare-earth element on the microstructure, mechanical properties, and whisker growth of Sn-58Bi alloys and solder joints in ball grid array (BGA) packages with Ag/Cu pads have been investigated. Mechanical testing indicated that the elongation of Sn-58Bi alloys doped with Ce increased significantly, and the tensile strength decreased slightly, in compar- ison with undoped Sn-58Bi. In addition, the growth of both fiber- and hillock-shaped tin whiskers on the surface of Sn-58Bi-0.5Ce was retarded in the case of Sn-3Ag-0.5Cu-0.5Ce alloys. The growth of interfacial intermetallic compounds (IMC) in Sn-58Bi-0.5Ce solder joints was slower than that in Sn-58Bi because the activity of Ce atoms at the interface of the Cu6Sn5 IMC/solder was reduced. The reflowed Sn-58Bi and Sn-58Bi-0.5Ce BGA packages with Ag/Cu pads had a ball shear strength of 7.91 N and 7.64 N, which decreased to about 7.13 N and 6.87 N after aging at 100°C for 1000 h, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics after ball shear tests.  相似文献   

13.
In this paper the solder balling, wetting, spreading, slumping and microhardness testing of the Sn-Zn based solders have been compared with the Sn-Pb solder. Two types of solders (Sn-9Zn and Sn-8Zn-3Bi) have been investigated along with Sn-37Pb solder for reference. The variation of these tests has been done as a function of reflow temperature from 220-250 °C. Solder balls of these three solder pastes after 15 min heating at 230 °C show no ball formation surrounding the central ball. Spread test shows that above 240 °C Sn-9Zn is very good and can be comparable to Sn-37Pb. The wetting angle of Sn-9Zn (39°) at 250 °C is even lower than the Sn-37Pb solder (41°). In case of Sn-8Zn-3Bi, the wetting angle is very high (77°) at 220 °C, which is unacceptable but it drops down to 48° at 250 °C. Line profiles of slump test show that after preheating at 160 °C, Sn-9Zn behaves similar to Sn-37Pb with better distinction in the finer pitch (120 μm). Microhardness shows two different characteristics for eutectic and non-eutectic solder pastes. Hardness of Sn-37Pb and Sn-9Zn (eutectic) decreases with increasing reflow temperature while the microhardness of Sn-8Zn-3Bi (non-eutectic) increases with increasing reflow temperature. Microstructural characterization at 220 and 250 °C shows grain coarsening in Sn-37Pb and Sn-9Zn solders, which cause the hardness to drop a little. For Sn-8Zn-3Bi, with increasing temperature the amount of hard Bi segregation increases which is the main cause of the rise in hardness. SEM images show the formation of Pb rich islands in Sn-37Pb, formation of Zn rod from spheroids in Sn-9Zn and precipitation of Bi-rich phase in Sn-8Zn-3Bi are the important features that contribute to different hardness nature.  相似文献   

14.
利用金相显微镜和扫描电镜对多次回流焊后的Sn-0.3Ag-0.7Cu-xBi/Cu焊点IMC和剪切断口形貌进行了观察和分析。结果表明:Bi的加入提高了接头剪切强度,且随着Bi含量的增加而增加,当w(Bi)为4.5%时达最大值45.07MPa,同时Bi的加入有效抑制了焊点IMC的增长。经过5次回流焊后,未加入Bi的焊点剪切强度由24.55MPa下降到20.82MPa,而加入w(Bi)为3.0%的焊点剪切强度由35.95MPa下降到32.46MPa。  相似文献   

15.
Several near-eutectic solders of (1) Sn-3.5Ag, (2) Sn-3.0Ag-0.7Cu, (3) Sn-3.0Ag-1.5Cu, (4) Sn-3.7Ag-0.9Cu, and (5) Sn-6.0Ag-0.5Cu (in wt.% unless specified otherwise) were cooled at different rates after reflow soldering on the Cu pad above 250°C for 60 sec. Three different media of cooling were used to control cooling rates: fast water quenching, medium cooling on an aluminum block, and slow cooling in furnace. Both the solder composition and cooling rate after reflow have a significant effect on the intermetallic compound (IMC) thickness (mainly Cu6Sn5). Under fixed cooling condition, alloys (1), (3), and (5) revealed larger IMC thicknesses than that of alloys (2) and (4). Slow cooling produced an IMC buildup of thicker than 10 μm, while medium and fast cooling produced a thickness of thinner than 5 μm. The inverse relationship between IMC thickness and shear strength was confirmed. All the fast- and medium-cooled joints revealed a ductile mode (fracture surface was composed of the β-Sn phase), while the slow-cooled joints were fractured in a brittle mode (fracture surface was composed of Cu6Sn5 and Cu3Sn phases). The effect of isothermal aging at 130°C on the growth of the IMC, shear strength, and fracture mode is also reported.  相似文献   

16.
This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag-xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.  相似文献   

17.
Sn-Zn-Bi无铅焊料表面张力及润湿性研究   总被引:9,自引:1,他引:8  
采用气泡最大压力法对Sn-9Zn-XBi焊料进行了表面张力测试,用平衡法测试焊料的润湿性。结果表明:Bi的添加大大降低了Sn-Zn系焊料熔体的表面张力;然而焊料暴露在空气环境下1min后,表面形成ZnO导致其表面张力增大;Bi的增加提高了焊料在铜片上的润湿力,缩短了润湿时间;Sn-9Zn-XBi焊料润湿力仍低于Sn-40Pb,其原因是焊料–铜界面能偏高。  相似文献   

18.
回流焊对SnAgCu焊点IMC及剪切强度的影响   总被引:1,自引:1,他引:0  
研究了回流焊次数对Sn-0.3Ag-0.7Cu-xNi/Cu(x=0,0.05)焊点的界面反应及其剪切强度的影响。结果表明:随着回流焊次数的增加,界面金属间化合物(IMC)Cu6Sn5和(Cu1-xNix)6Sn5的厚度均增加。在钎料中添加w(Ni)为0.05%,可有效抑制IMC的生长,与回流焊次数无关。回流焊次数对Sn-0.3Ag-0.7Cu/Cu和Sn-0.3Ag-0.7Cu-0.05Ni/Cu的剪切强度影响都不大,五次回流焊后剪切强度略有下降,剪切强度分别为21MPa和25MPa。发现断裂面部分在钎料中,部分在钎料和IMC之间。  相似文献   

19.
The interfacial reaction between Sn-0.7mass%Cu-(Ni) solders and a Cu substrate was investigated to reveal the effect of the addition of Ni to Sn-Cu solder on the formation of intermetallic compounds (IMCs). Sn-0.7Cu-xNi solders (x=0, 0.05, 0.1, 0.2 mass%) were prepared. For the reflow process, specimens were heated in a radiation furnace at 523 K for 60 sec, 300 sec, and 720 sec to estimate the interfacial reaction between the molten solder and Cu substrate. Then, for the aging process, some specimens were heat-treated in an oil bath at 423 K for 168 h and 504 h. The cross sections of soldered specimens were observed to measure the dissolution thickness of the Cu substrate and the thickness of the IMC and to investigate the microstructures of IMC. The results showed that, just after the reflow process, the dissolution thickness of the Cu substrate increased with the increase of Ni content in the Sn-0.7Cu-xNi solder and the thickness of the IMC between the solder and Cu substrate was the minimum in the Sn-0.7Cu-0.05Ni solder. After the aging process, the IMC grew with the increase of aging time. In the case of 0.05% Ni, the IMC thickness was the thinnest regardless of aging time. It is clear that 0.05% Ni addition to Sn-0.7Cu solder very effectively inhibits the formation and growth of the IMC between solder and Cu substrate. Electron probe microanalysis of the IMC showed that the IMC layer in the Sn-0.7Cu-Ni solder contained Ni, and the IMC was expressed as (Cu1−y ,Ni y )6Sn5.  相似文献   

20.
In the present study, small amounts of nanodiamond particles were added to Sn-3.0Ag-0.5Cu eutectic solder to investigate the growth kinetics of the intermetallic compound (IMC) layer at ball grid array pad/solder interfaces. The IMC growth behavior was found to be comparatively slower than that of plain solder joints due to a change in the diffusivity of the constituent atoms and the thermodynamic parameters of elemental affinity. The solder joints containing nanodiamond particles consistently showed higher hardness and strength than plain Sn-3.0Ag-0.5Cu solder joints, after a number of reflow cycles. The hardness of the doped solder was enhanced due to the homogeneous dispersion of nanoparticles, refining IMC phases which act as reinforcements in the solder matrix and as barriers to movement of dislocations. The fracture surface after shear testing of plain solder exhibited a relatively smooth fracture surface, while doped solder joints showed ductile failures with very rough dimpled surfaces. The damping capacity of the doped solder was better than the plain solder at a wide range of temperatures, and the solder with nanoparticle diamond exhibited lower internal friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号