首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the proposed modified opponent‐colors system, the hue regular rectangles show the chromatic coordinates of any chromatic colors better than hue circles. In the hue rectangles equihue and equichroma loci are shown together with equigrayness loci. In the color perception space of the modified opponent‐colors system, a city‐block metric must be used instead of a Euclidean one for distance. The reason for this is described in detail. The proposed color perception space constitutes a regular octahedron. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 171–179, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10046  相似文献   

2.
A new theoretical color order system is proposed on the basis of various studies on color appearance and color vision. It has three orthogonal opponent‐colors axes and an improved chromatic strength of each hue. The system has color attributes whiteness w, blackness bk, grayness gr, chroma C, and hue H. A method is given for determining Munsell notations of any colors on any equi‐hue planes in the system. A method is also given for determining grayness regions and grayness values on hue‐chroma planes in the system. It is concluded that colors with the same color attributes [w, gr, bk, C] but with different hues in the theoretical space have approximately the same perceived lightness, the same degree of vividness (“azayakasa” in Japanese), and also the same color tone. The tone concept, for example used in the Practical Color Coordinate System (PCCS), is clarified perceptually. The proposed system is a basic and latent color‐order system to PCCS. In addition, the concept of veiling grayness by a pure color with any hue is introduced. Further, relationships are clarified between generalized chroma c(gen) and grayness. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 135–150, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10234  相似文献   

3.
The objective of this research was development of a quantitative model of simultaneous contrast (induction) to aid selection of sets of easily identified map colors. The model is an extension of R. W. G. Hunt's model of color appearance. Contrasts between central and proximal colors were used to adjust Hunt's lightness, relative redness-greenness, and relative yellowness-blueness measures. Human subject responses to CRT displays in an experiment were analyzed to produce a set of rules for selecting map colors. Rather than predict average perceptions for central/proximal color combinations, acknowledgment was made of the inherent variability in map readers' perceptions of color by developing generalized perception buffers that accounted for at least 90% of test subject responses. The task of selecting colors that will not be confused once they appear with numerous proximal colors on a map thus becomes a task of selecting colors that do not have buffers that overlap in color space. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
I describe complementary colors' physiology and functional roles in color vision, in a three‐stage theory (receptor, opponent color, and complementary color stages). 40 specific roles include the complementary structuring of: S and L cones, opponent single cells, cardinal directions, hue cycle structure, hue constancy, trichromatic color mixture, additive/subtractive primaries, two unique hues, color mixture space, uniform hue difference, lightness‐, saturation‐, and wavelength/hue‐discrimination, spectral sensitivity, chromatic adaptation, metamerism, chromatic induction, Helson‐Judd effect, colored shadows, color rendering, warm‐cool colors, brilliance, color harmony, Aristotle's flight of colors, white‐black responsivity, Helmholtz‐Kohlrausch effect, rainbows/halos/glories, dichromatism, spectral‐sharpening, and trimodality of functions (RGB peaks, CMY troughs whose complementarism adapts functions to illuminant). The 40 specific roles fall into 3 general roles: color mixture, color constancy, and color perception. Complementarism evidently structures much of the visual process. Its physiology is evident in complementarism of cones, and opponent single cells in retina, LGN, and cortex. Genetics show our first cones were S and L, which are complementary in daylight D65, giving a standard white to aid chromatic adaptation. M cone later split from L to oppose the nonspectral (red and purple) hues mixed from S+L. Response curves and wavelength peaks of cones L, S, and (S+L), M, closely resemble, and lead to, those of opponent‐color chromatic responses y, b, and r, g, a bimodal system whose summation gives spectral‐sharpened trimodal complementarism (RGB peaks, CMY troughs). Spectral sharpening demands a post‐receptoral, post‐opponent‐colors location, hence a third stage. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

5.
6.
The purpose of this research is to investigate the color appearance and color connotation of unrelated colors. To investigate color appearance (i.e., brightness, colorfulness, and hue) for unrelated colors, 22 observers have answered their color appearance for 50 unrelated color stimuli using the magnitude estimation method. Perceptual data obtained by the experiment is compared with the color attributes data estimated by unrelated‐color appearance models, CAM97u and CAM02u. It is found that both models perform reasonably well but the performance of CAM02u is better than that of CAM97u. For investigating color connotation for unrelated colors, 32 observers have judged their color connotation for the 50 unrelated color stimuli using the 10 color connotation scales (i.e., “Warm – Cool,” “Heavy – Light,” “Modern – Classical,” “Clean – Dirty,” “Active – Passive,” “Hard – Soft,” Tense – Relaxed,” “Fresh – Stale,” “Masculine – feminine,” and “like – Dislike”), and semantic differential method is used for measurement. It is found that the color connotation models developed for related colors perform poorly for unrelated colors. Experimental results indicate that brightness attribute is confusing to estimate and does not affect color connotation significantly for unrelated colors. Based on the psychophysical data, new models for “Warm‐Cool”, “Heavy‐Light”, “Active‐Passive” and “Hard‐Soft” were proposed using CAM02u hue, brightness, and colorfulness. Color connotations for unrelated colors are classified into three categories, which “Color solidity,” “Color heat,” and “Color purity.” © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 40–49, 2015  相似文献   

7.
Continuing a discussion by Kuehni, this note examines the problem of fitting as many as possible colors in a 1‐JND radius sphere such that each pair of colors is separated by at least 1 JND. Kuehni announced nine. A first estimate yields a maximum of 13, but this is too many because colors populating adjacent spheres will be too close to each other. Accordingly, I derive the maximum number, , of discriminable colors per unit volume of color space, and then formally compute from this number packing density a number of colors inside the unit sphere. That estimate, nearly 6, will undoubtedly erode when discrete color points are chosen within the unit sphere. Kuehni's estimate of 9 is too high. © 2016 Wiley Periodicals, Inc. Col Res Appl, 2016  相似文献   

8.
The Munsell Color System and the Natural Color System are widely used but they have some limitations due to the manufacturing process and sampling choices. To estimate quantitatively these limitations we compared the colors of natural scenes with the colors represented by these systems under a wide range of illuminants. Spectral data from the two systems and from natural scenes were used in the analysis. It was found that a considerable portion of natural colors are not accounted by these systems, mainly colors with low lightness levels. Under D65 the Munsell Color System color volume corresponds to 72% of the Natural Color System color volume which in turn represents only 53% of the natural scenes color volume. If individual colors are considered, less than half are contained within these systems. To obtain a complete match to the natural colors contained by the color systems thresholds of 7 and 5 CIELAB units would be required for Munsell Color System and Natural Color System, respectively. Variations with the illuminant are generally modest showing that both system work similarly across different illuminations. Although these Color Systems have limitations in describing low lightness colors they perform quite well for medium to high levels of lightness.  相似文献   

9.
10.
Boundary colors are observed when light from a scene is dispersed by a prism or diffraction grating. We discovered that patterns with repeating black and white stripes can produce repeating bands of boundary colors with two hues. These hues are virtually constant as measured by chromaticity or CIELAB. We found seven cases of this kind using a new appearance model for boundary colors. The model correctly predicts that green and magenta bands recur as stripe widths and dispersion strength vary. The first green/magenta case in the sequence traces out an accurate ellipse in XYZ color space. Green and magenta bands are prominent in supernumerary rainbows and interference rings, and we explain why that might be the case. The explanation is based on an interesting property of the visible spectrum. In addition to the green/magenta cases, the other cases are orange/cyan, yellowish‐green/purple, and yellow/violet. The success of the boundary color appearance model implies that bands are perceived as if the wavelength responses of the cones were essentially independent, which contradicts the actual behavior of cones. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 135–146, 2015  相似文献   

11.
Chroma‐step perception and its corresponding color difference in the same hue direction are the different attributes on color perception. The differences between them are different for different hues. Hue‐appearance step and its corresponding color difference along the same hue circle also have completely different concepts. The causes of the above two facts are clarified. The information based on various experiments and theoretical considerations are given for supporting the facts. In addition, it is clarified that the relationship on color‐appearance step and color difference has completely different characteristics between the quantitative (chroma) and the qualitative (hue) attributes of object colors. The importance of chromatic strength (CS) on hue is clarified in each of the three color attributes hue, value, and chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 30, 42–52, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20073  相似文献   

12.
A new type of color‐appearance model is presented together with its formulations. It is named In‐CAM(CIELUV), which means the integrated color‐appearance model using CIELUV space. Using the In‐CAM(CIELUV), we can integrate its fields of applications in both colorimetric engineering and artistic color design. Various applications are introduced in colorimetric and color design fields. The In‐CAM(CIELUV) connects directly colorimetric color space and perceptual Hue‐Tone color order systems. In other words, the In‐CAM (CIELUV) gives a colorimetric basis for Hue‐Tone system. The three color attributes in the In‐CAM(CIELUV) space are mutually independent. This is a very convenient feature for selecting color combinations. Some two‐color combinations selected systematically in the In‐CAM(CIELUV) space are shown. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 125–134, 2008  相似文献   

13.
Some modifications are made to the achromatic color perceptions in Hering's opponent‐colors theory. They are the introduction of the reference color Gray and the use of the orthogonal coordinate system. The modified opponent‐colors theory has a symmetrical structure for the three opponent‐colors axes, whiteness‐grayness‐blackness, redness‐grayness‐greenness, and yellowness‐grayness‐blueness, and it unifies the Hunt and the Stevens and Jameson–Hurvich effects. It is also noted that two kinds of color‐appearance spaces exist. One is the color‐appearance space derived from color perceptions of object colors (called the CPS color‐appearance space). The other is that modeled from their colorimetric values for predicting color perceptions (called the UCS color‐appearance space). The CPS color‐appearance space is mainly described in this article. Scaling of the CPS color‐appearance space and the existence of the reference color perception Gray are discussed in detail. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 290–304, 2001  相似文献   

14.
15.
The purpose of this study was to analyze the symbolization of colors as cultural codes, based on costume colors. In order to study the significance of colors in cultural changes, we carried out a quantitative analysis and interpreted it from the perspective of cultural semiotics. The range of this study was focused on Korean costume colors, over diverse diachronic stages of Korean culture. For this study 1535 color samples were collected, measured with a spectrophotometer, and analyzed quantitatively according their diachronic stages of origin. As a result, red, blue, and yellow were found to be the most frequently used colors during the Chosun Dynasty, a period based on Confucianism. These colors acted as cultural codes with cultural significance. During the Modern times pink, light blue, and black increased in frequency and represented the reception of western culture, the changing sex role of women in society, and utilitarianism. In these days, neutral colors and grayish tones of all colors are the most significant colors of high frequency. The use of such colors is closely related to industrialization, mechanization, functionalism, and the changes of women's sex roles in the societies. They are used as cultural codes, especially to emphasize a rational and masculine image rather than a feminine image. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 71–79, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20290  相似文献   

16.
CAT02, the most widely used chromatic adaptation transform to characterize the chromatic adaptation mechanism in the human visual system, includes a factor D to characterize the degree of chromatic adaptation. This factor, however, is only determined by the luminance level of the adapting field and surround. This study was designed to investigate how the change of adapting chromaticities and the simultaneous changes of adapting chromaticities and luminance affect the degree of chromatic adaptation and color appearance on computer displays. The human observers adjusted the color appearance of various familiar objects and cubes on different display backgrounds. A higher degree of chromatic adaptation was found when using familiar objects, which was likely due to the cognitive mechanism. Both the adapting chromaticities and luminance significantly affected the degree of chromatic adaptation, with a lower degree under an adapting condition with a lower adapting correlated color temperature and a lower adapting luminance. In addition, the effect of adapting luminance on colorfulness (known as the Hunt Effect) was likely to be overpredicted in CAM02-UCS, which merits further investigations.  相似文献   

17.
A quantitative evaluation method for the CIE color‐planning activity within the product design cycle is proposed in this article. The questionnaire‐based process that is traditionally employed to obtain objective color psychology tends to be time‐consuming. Accordingly, this study proposes the use of gray system theory to overcome this problem. In the CIE color system, colors are defined by three primary colors, R (red), G (green), and B (blue). Using these three principal hues with fixed equigap sequences to simulate specific basic color samples is an efficient means of investigating unicolor images on a personal computer. However, a gray relational generating operation can be used to simulate colors beyond these basic samples and to predict the corresponding membership values for semantic words. In addition, the gray clustering operation is introduced to predict the overall color image evaluation of multicolored products. The predicted evaluation results of the gray system theory and a back‐propagation neural network are both compared with experimentally verified results. The results indicate that the gray forecasting model is the more effective means of predicting the image evaluation, and therefore, the method is adopted within the color‐planning activity. Although this study takes the example of the Internet‐aided color planning of a baby walker as a case study, the proposed method can also be used on other products. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 222–231, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20009  相似文献   

18.
The development of the idea of simple or fundamental colors in Western culture from classical Greece to the early 17th century is shown, with particular emphasis on writers in the 16th and early 17th centuries. Four streams of thought are found: (1) Aristotle's seven colors, congruent with seven tastes and seven tones, thus symptomatic of an underlying general harmony; (2) Four‐basic‐color sequences where colors are emblematic of the four classical elements; (3) Spectral sequences; (4) Three simple chromatic colors between white and black, based on colorant mixture. In the late 16th century seven‐color sequences came to represent categorical sequences, in addition to shorter fundamental color sequences. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 92 – 99, 2007  相似文献   

19.
Some 100 years before Albert Munsell developed his color order system, French silk merchant and inventor of a technology for producing works of art in silk velours, Gaspard Grégoire, introduced a color order system based on the color attributes hue, (relative) chroma, and lightness. Conceived in the mid‐1780s, an atlas with 1350 samples was produced before 1813 and found use in French Royal manufacturing operations and educational institutions. It was followed a few years later by one with 343 samples. Grégoire's work was subsequently overshadowed by Michel‐Eugene Chevreul's more complicated and less intuitive hemispherical system of 1839. © 2007 Wiley Periodicals, Inc. Col Res Appl, 33, 5–9, 2008  相似文献   

20.
Riemannian metric tensors of color difference formulas are derived from the line elements in a color space. The shortest curve between two points in a color space can be calculated from the metric tensors. This shortest curve is called a geodesic. In this article, the authors present computed geodesic curves and corresponding contours of the CIELAB ( ), the CIELUV ( ), the OSA‐UCS (ΔEE) and an infinitesimal approximation of the CIEDE2000 (ΔE00) color difference metrics in the CIELAB color space. At a fixed value of lightness L*, geodesic curves originating from the achromatic point and their corresponding contours of the above four formulas in the CIELAB color space can be described as hue geodesics and chroma contours. The Munsell chromas and hue circles at the Munsell values 3, 5, and 7 are compared with computed hue geodesics and chroma contours of these formulas at three different fixed lightness values. It is found that the Munsell chromas and hue circles do not the match the computed hue geodesics and chroma contours of above mentioned formulas at different Munsell values. The results also show that the distribution of color stimuli predicted by the infinitesimal approximation of CIEDE2000 (ΔE00) and the OSA‐UCS (ΔEE) in the CIELAB color space are in general not better than the conventional CIELAB (ΔE) and CIELUV (ΔE) formulas. © 2012 Wiley Periodicals, Inc. Col Res Appl, 38, 259–266, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号