首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
主要研究了异形截面聚酯纤维织物的显深色性以及异形度对显深黑色性的影响。采用K/S值、L*值和Integ值3个指标表征织物的显深黑色效果,结果表明:异形截面聚酯纤维织物具有较好的显深黑色效果;同时,聚酯纤维截面异形度对纤维织物的显深色效果影响颇大,高截面异形度可以提高织物的显深黑色效果。定性分析了所设计的异形截面纤维的反光特性,解释了其显深色性的原因,对设计纤维的色光特性有参考价值。  相似文献   

2.
The distribution of aroma chemical cis‐3‐hexenyl salicylate, on both longitudinal and cross‐sectional fiber directions, was identified through backscattered electron microscopy and X‐ray microanalysis including X‐ray spectrum and X‐ray map. Three fibers—cotton, lyocell, and polyester [poly(ethylene terephthalate) (PET)]—were used as substrates to evaluate the influence of fiber physical/chemical nature on the distribution of cis‐3‐hexenyl salicylate. It was found that the distribution of cis‐3‐hexenyl salicylate on the external and internal fiber surfaces correlated strongly with the chemical structure, roughness, and both pore and capillary structure of the textiles. cis‐3‐Hexenyl salicylate distributed through the whole cotton fiber cross section with higher concentrations in lumen and crenulations, whereas it distributed relatively uniformly in the surface and cross section of lyocell fiber. This is believed to relate to the macro‐ and micropores, macroscopic roughness, and the presence of a larger number of polar groups for these cellulose fibers. In contrast, cis‐3‐hexenyl salicylate accumulated at a few spots on the fiber surfaces of PET and in interfiber spaces of closely packed fibers, attributed to lower polarity, round cross‐sectional shape, smooth surfaces, and fewer voids of the PET fiber structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3557–3564, 2004  相似文献   

3.
One of the most important morphological features of fibers is their cross‐sectional shape. Nowadays, the circular fiber cross‐section is the most common shape of melt‐spun man‐made fibers. Other shapes are beginning to emerge for a variety of reasons such as performance, comfort, pilling propensity, bulkiness, tactility, processing etc. The filaments' cross‐section can be easily varied by changing the spinneret hole shape. Synthetic fibers that are predominantly spun by the melt spinning method with spinnerets having the noncircular hole geometry are called profiled or noncircular fibers. Modifications of the fiber cross‐section allow designing surface properties in yarn and fabric. However, the effect of profiled fibers on yarn properties has not been well documented yet. In this article, the influence of different filament cross‐section geometry on fiber properties was studied. PET (polyethylene terephthalate) filament yarns having two different cross‐sectional shaped filaments, circular and cruciform, were manufactured by melt spinning. Differences in tensile properties of filament yarn and as well as of individual filament depending on the cross‐sectional type were studied and revealed. More over, thermal and thermomechanical properties of filament yarn of both the cross‐sections were studied and revealed by DSC and TMA method, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Cationic dyeable poly(ethylene terephthalate) (CD‐PET) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in the proportions of 75/25, 50/50, 25/75) from two melt twin‐screw extruders to prepare CD‐PET/m‐iPP (and m‐iPP/CD‐PET)‐conjugated fibers of the island‐in‐sea type. This study investigated the thermal behavior and mechanical and morphological characteristics of the conjugated fibers using DSC, TGA, WAXD, melting viscosity rheometer, density indicator, tenacity measurement, and a polarizing microscope. Melting behavior of CD‐PET/m‐iPP polyblended polymers exhibited negative‐deviation blends (NDB) and the 50/50 blend showed a minimum value of the melt viscosity. Experimental results of the DSC indicated CD‐PET and m‐iPP molecules formed a partial miscible system. The tenacity of CD‐PET/m‐iPP‐conjugated fibers decreased initially and then increased as the m‐iPP content increased. Crystallinities and densities of CD‐PET/m‐iPP‐conjugated fibers presented a linear relation with the blend ratio. On the morphological observation, it was revealed that the blends were in a dispersed phase structure. In this study, the CD‐PET microfibers were successfully produced with enhanced diameters (from 2.2 to 2.5 μm). Additionally, m‐iPP colored fibers (m‐iPP fibers covered with CD‐PET polymer) were also successfully prepared. Meanwhile, the presence of PP‐graft‐MA compatibilizer improved the tenacity considerably. Blends with 10 wt % compatibilizer exhibited maximum improvement in the tenacity for m‐iPP colored fibers. The dye exhaustions of various fabrics followed the order: m‐iPP colored fibers > conventional CD‐PET fibers > CD‐PET microfibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5396–5405, 2006  相似文献   

5.
Rodlike polymer samples were made from three kinds of poly(ethylene terephthalate) (PET) pellets with different intrinsic viscosities (IV), and from polyalirate (Vectra) pellets. PET and Vectra fibers were produced using a melt‐electrospinning system equipped with a CO2‐laser melting device from these rodlike samples. The effects of IV value and laser output power on the fiber diameter of PET were investigated. Furthermore, the effect of the laser output power on the fiber diameter of Vectra was investigated. The crystal orientation of these produced fibers was also investigated by X‐ray photographs. The following conclusions were reached: (i) the diameter of PET fiber decreases with increasing laser output power; (ii) the minimum average diameter of PET fibers is scarcely influenced by the value of IV; (iii) the electrospun PET fibers show isotropic crystal orientation; (iv) fibers having an average fiber diameter smaller than 1 μm cannot be obtained from PET and Vectra using the system developed; and (v) preferred liquid crystal orientation can be seen in electrospun Vectra fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Flat fibers and hollow fibers were prepared through the high‐speed melt spinning of poly(ethylene terephthalate) (PET), and the structures of these fibers were compared with those of circular fibers. The cross‐sectional shape of each fiber changed to a dull shape in comparison with that of the respective spinning nozzle. The change in the cross‐sectional shape was slightly suppressed with an increase in the take‐up velocity. There was a significant development of structural variation in the cross section of flat fibers in that the molecular orientation and crystallization were enhanced at the edge. Despite the difference in the cross‐sectional shape, the structural development of flat, hollow, and circular fibers with increasing take‐up velocity showed almost similar behavior. Considering that the tensile stress at the solidification point of the spin line is known to govern the structure development of high‐speed spun PET fibers, it was speculated that the effects of the enhancement of cooling and air friction on the tensile stress at the solidification point cancel each other. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1575–1581, 2001  相似文献   

7.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Poly(ethylene phthalate) (PET)/nano‐TiO2 composites prepared via in situ polymerization were spun into fiber by the melt‐spinning process. The dispersion of nanosized rutile TiO2 in the PET was studied using transmission electron microscopy (TEM) and scanning probe microscopy (SPM) techniques. The mechanical properties and the properties of ultraviolet (UV) protection were investigated. The results showed that rutile TiO2 can be dispersed uniformly by the in situ polycondensation process. The mechanical properties of PET/TiO2 fiber were slightly affected by adding nano‐TiO2. The UV‐ray transmittance of PET/nano‐TiO2 fabrics was below 10% in the UV‐A band and below 1% in the UV‐B band. And the ultraviolet protection factor (UPF) of PET/nano‐TiO2 fabrics was greater than 50. All these PET/TiO2 nanocomposite fabrics exhibited excellent UV‐blocking properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1588–1593, 2006  相似文献   

9.
The jet stretch of dry‐jet wet spun PAN fiber and its effects on the cross‐section shape of fibers were investigated for a PAN‐DMSO‐H2O system. Clearly, the spinning parameters, such as dope temperature, bath concentration, bath temperature, and air gap, all influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio as well as that of jet stretch changed. Under given conditions, as the bath temperature was below 30°C or above 45°C, jet stretch had little effect on the cross‐sectional shapes of PAN fiber. Within the temperature of 30–45°C, fiber's cross‐section shapes change obviously from round over an approximate circular shape into to an elliptical or a flat shape. The scope of jet stretch produced PAN fiber with circular cross‐section was bigger than that in wet spinning. These results indicated that appropriate air gap height, under milder formation conditions in dry‐jet wet spinning, could result in higher jet stretch and higher postdrawing ratio. The appropriate jet stretch and postdrawing ratio could result in circular profile of PAN fiber, which were helpful to produce round PAN precursor with finer size and better properties for carbon fiber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Although there are significant differences between high‐speed melt spinning and melt blowing (MB), they are similar in many important components. This study, motivated by the need to better understand the bicomponent MB process, used the basic theories of high‐speed melt spinning to estimate the fiber temperature and elongation viscosity profiles of the polypropylene/poly(ethylene terephthalate) (PP/PET) bicomponent MB process. During the MB process, the filament temperature decreased dramatically within the first 2 in. from the MB die. The fiber temperature‐decay profiles of PP, PET monocomponent, and PP/PET bicomponent filaments followed similar trends. PP filaments attenuated faster than PET filaments and the bicomponent filaments attenuated at a medium rate between that of PP and PET. Accordingly, the elongational viscosity increased significantly in the first 2 in. from the die. PET filaments exhibited higher elongational viscosity than that of 100% PP filaments. The elongational viscosity profile of 75%PP/25%PET was between that of PP and PET monocomponent filaments. These data provided important information on understanding the MB process and filament attenuation. It also suggested that the filament elongational viscosity profile is the key factor in production of finer bicomponent MB fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1145–1150, 2003  相似文献   

11.
A numerical analysis program for high‐speed melt spinning of flat and hollow fibers was developed. Change in cross‐sectional shape along the spin line was incorporated adopting a formulation in which energy reduction caused by the reduction of surface area was assumed to be equal to the energy dissipation by viscous flow in the plane perpendicular to the fiber axis. In the case of flat fiber spinning, the development of temperature distribution in the cross section was considered. It was found that the empirical equations for air friction and cooling of the spin line of circular fibers can be applied for the flat fiber spin line if the geometrical mean of long‐axis and short‐axis lengths was adopted, instead of fiber diameter, as the characteristic length for Reynolds number and Nusselt number. Three features expected through the high‐speed spinning of noncircular cross‐section fibers could be reproduced: (1) although cooling of the flat fiber spin line was enhanced, calculated tension at the position of solidification was not affected much by the difference in cross‐sectional shape; (2) change in cross‐sectional shape proceeded steeply near the spinneret; and (3) temperature at the edge became significantly lower than that at the center in the cross section of flat fibers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1589–1600, 2001  相似文献   

12.
A novel speedy and super‐water‐absorbing non‐woven cloth with hierarchical three‐dimensional network (3D‐SS‐PET) was fabricated through the induction of UV copolymerization on polyethylene terephthalate (PET) fibers followed by a volume phase transition. The macroscopic three‐dimensional network implied that the PET non‐woven substrates are complicated three‐dimensional fibrous materials including oriented fibers in preferential or random directions. The microscopic three‐dimensional network is poly(acrylic acid‐co‐acrylamide) (poly(AA‐co‐AM)) crosslinked copolymer layers on the fiber surface. The rapid volume phase transition was achieved by immersing the swelled non‐woven poly(AA‐co‐AM) modified PET (PET‐g‐AA‐co‐AM) in ethanol. The above process was an essential step to prepare the copolymer chain; after that the fiber surface was extended to form abundant capillary channels and plenty of space between fibers. The water contact angle decreased remarkably from 130° to 0°, while the absorbing capacity of the saturated water and the average water‐absorbing rate experienced an increasing trend, rising from 300 to 324.6 g g?1 in 24 h and 18.6 and 222 g (g min)?1 in 40 s, respectively. It was concluded that surface hydrophilicity and capillaries of the hydrophilic modified macroscopic fibrous structure enhanced the water‐absorbing rate and the swelling process contributed to the higher water absorption capacity. This speedy and super‐water‐absorbing material exhibits great potentiality in diapers, sanitary napkins, wound dressings, surgical pads, and hygroscopic and sweat‐free underwear in extremely cold areas. © 2018 Society of Chemical Industry  相似文献   

13.
Sugarcane bagasse, a cheap cellulosic waste material, was investigated as a raw material for producing lyocell fibers at a reduced cost. In this study, bagasse was dissolved in N‐methylmorpholine‐N‐oxide (NMMO) 0.9 hydrate, and fibers were prepared by the dry jet‐wet spinning method with coagulation in an aqueous NMMO solution. The effects of NMMO in 0 to 50% concentrations on the physical properties of fibers were investigated. The coagulating bath contained water/NMMO (10%) solution produced fiber with the highest drawability and highest physical properties. The cross‐section morphology of these fibers reveals fibrillation due to the high degree of crystallinity and high molecular orientation. In the higher NMMO concentrated baths (30 to 50%), the prepared fibers were hollow inside, which could be useful to make highly absorbent materials. The lyocell fibers prepared from bagasse have a tensile strength of 510 MPa, initial modulus of 30 GPa, and dynamic modulus of approximately 41 GPa. These properties are very comparable with those of commercial lyocell fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
This investigation explores the kinetics of the alkaline hydrolysis of regular poly(ethylene terephthalate) (PET) solid fibers and PET micro‐porous hollow fibers, using statistical regression analysis. Statistical regression analysis results concerning the kinetics of the alkaline hydrolysis of regular PET solid fibers and PET micro‐porous hollow fibers yielded a β value of 1. The R2 of the kinetic equation for α values from 1.07 to 1.16 exceeded that for α = 1. The rate constants of alkaline hydrolysis followed the order PET micro‐porous hollow fibers ? regular PET solid fibers. A morphology of large pores of diameter 0.1–3.5 μm was observed following alkali treatment of the PET micro‐porous hollow fibers. The weight loss percentage of the hollow fibers was around 20%. The hollowness of the PET micro‐porous hollow fibers after alkali treatment was between 30 and 32%. The PET micro‐porous hollow fibers exhibited simultaneous water‐absorption/release and keep‐warm functions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
This article describes the production of microfiber nonwoven fabrics from segment pie bi‐component fibers using air‐laying and hydro‐entanglement. The bi‐component fibers were split into microfibers during hydro‐entanglement. The microfiber nonwoven fabrics are compared with similar products made from single component fibers. The degree of fiber splitting is found to depend on the jet pressure as well as the fiber position in the web thickness direction. Compared with the nonwovens fabric made from single component fibers, the microfiber nonwoven fabrics have higher tensile strength, lower elongation, higher water absorbency. However, contrary to what was expected, the microfiber nonwovens fabrics have a stiffer handle. This is caused by the increased fiber entanglement and much denser structure for the bi‐component microfiber nonwoven fabrics. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
The surface and adhesion properties of different molecular weight poly(ethylene glycol) (PEG) (400, 1500, and 3000 g/mol) on untreated and air‐atmospheric plasma‐treated PET woven fabrics were studied, with the aim of developing durable hydrophilic PET fibrous structures. PEG application was carried out by padding of the PET fabric in aqueous solution of PEG followed by curing and drying. The surface properties of the PEG‐coated PET fabrics were then characterized using wicking test to measure the water contact angle (θ°) and capillary weight (Wc), and using atomic force microscopy (AFM) images in the tapping mode. Results showed that without a prior air‐atmospheric plasma treatment of the PET fabric, the water contact angle decreased and capillary weight increased with the three PEGs, implying an increase in the hydrophilicity of both inner and outer PET fabric fiber surface. Air‐plasma treatment of the PET fabrics before PEG coating increases further the hydrophilicity of the inner fabric fiber surface: the capillary weight was almost doubled in the case of the three PEGs. Best results were obtained with PEG 1500: water contact angle decreasing from 82° to 51°, and the capillary weight increasing from 11 mg to 134 mg. Moreover, wash fastness test at room temperature and at 80°C confirms improved adhesion of PEG‐1500 to the plasma‐treated PET woven fabric surface, while under the same conditions the plasma‐treated PET without PEG loses completely its hydrophilic character. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

17.
The performance of carbon fibers depends on the quality of the precursor and the conditions of the thermal treatment. In detail, for a PAN precursor fiber the viscosity of a spinning dope and the draw ratio during the spinning process needs to be considered. Through wet spinning, different types of PAN precursor fibers with defined spinning parameters, including solid content, solvent content in a bath, and especially draw ratio resulting in defined cross section diameters, were fabricated and analyzed with tensile tests, density investigations, SEM, TGA‐MS, FTIR, and XRD. The results show that the mechanical properties of the fibers correlate to crystallinity. The cross section diameter is strongly related to the morphology of the fibers after thermal treatment. By extending the postdrawing of PAN fibers high tenacities were obtained at the cost of the cross section shape. In addition, TGA measurements reveal trapped residues of the wet spinning process as well as show several chemical reactions takes place at the same time at different temperatures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43698.  相似文献   

18.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Textiles, with appropriate light absorbers and suitable finishing methods, can be used as ultraviolet (UV) protection materials. In this study, we investigated the effects of nano‐TiO2 particles on the UV‐protective and structural properties of polypropylene (PP) textile filaments. Master batches of PP/TiO2 nanoparticles were prepared by melt compounding before spinning, and filaments incorporating 0.3, 1, and 3% TiO2 nanoparticles were spun in a pilot melt‐spinning machine. The structural properties of the nanocomposite fibers were analyzed with scanning electron microscopy, X‐ray diffractometry, differential scanning calorimetry, and tensile tests. The UV‐protection factor was determined to evaluate the UV‐protective properties of the filaments. In conclusion, although the structure and mechanical properties of the nanocomposite filaments were slightly affected by the addition of nano‐TiO2, the UV‐protective properties of the PP filaments improved after treatment with nano‐TiO2, and the nanocomposite filaments exhibited excellent UV protection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号