首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this work was to experimentally and numerically investigate the Liu Shu River oil shale drying by the means of flue gas in a fluidized bed dryer. Several experiments were performed under different temperatures conditions. The moisture content of oil shale was measured during the experiments. The two-stage drying model was incorporated in computational fluid dynamics (CFD) package FLUENT via user-defined functions (UDF) and utilized for simulation of heat and mass transfer of oil shale drying in the fluidized bed dryer. The simulation results for solid moisture content agreed well with experimental data. The effects of the temperature and velocity of flue gas, initial bed height, and the particle size on the drying characteristics were predicted and analyzed. It is shown that the gas temperature and velocity are the important parameters in the whole drying process. The particle size has more obvious influence in the falling drying period than the constant drying period. The temperatures of gas and solid phases were monitored. It is shown that the so-called “near gas distributor zone” is the most effective heat transfer zone, which agrees well with the calculated value. The system quickly reached thermal equilibrium, characterizing a nearly isothermal bed. The developed model provides a very good demonstration to describe the oil shale drying in the fluidized bed dryer, and may provide important information for design, optimization of operation conditions.  相似文献   

2.
In this study, a hybrid dyer, combining heat pump drying (HPD) with fluidized bed drying (FBD) concepts were designed and fabricated. The pregerminated rough rice (pre-GRR) was dried in multistage using this hybrid dryer to compare with the single-stage drying by hot air dryer. The objectives were to test the application of this hybrid dryer and determine the suitable drying condition for pre-GRR. The result indicated that the punched plate distributor was the most suitable distributor. The pre-GRR should be dried by the three-stage drying method using either FBD or HPD at 45°C in the last stage to obtain higher head rice yield, lower fissure grain, and better color values than their counterparts. The scanning electron micrographs proved that starch gelatinization occurred when applying FBD at temperatures between 100 and 140°C causing the adhesive connections inside the kernels and subsequent decrease in fissures.  相似文献   

3.
Scientific literature of agromaterial drying present contradictory conclusions in terms of the kinetic effect of airflow velocity. Some authors confirmed that it does not trigger any modification of drying, while some articles tried to establish empirical models of the effective diffusivity Deff versus the airflow velocity, what is fundamentally erroneous. By analyzing internal and external transfer phenomena, this research aimed at recognizing that once air velocity is higher than a critical airflow velocity (CAV), the internal transfers become the limiting phenomenon. CAV depends on the effective diffusivity and the product size. It was calculated in the cases of two studied raw materials (apple and carrot), differently textured by instant controlled pressure drop (DIC). Values of CAV greatly depend on diffusivity of water within the matrix. At temperature T?=?40°C, they were 1?m/s for untreated carrot and 2.1?m/s for DIC-textured carrot, whose Deff values were 1.31 and about 3?×?10?10?m2/s, respectively. Also, at temperature T?=?40°C, they were 2.1?m/s for untreated apple and 3?m/s for DIC-textured apple, whose Deff were 1.4 and about 10.4?×?10?10?m2/s, respectively.  相似文献   

4.
简要介绍了变压器真空汽相干燥技术的用途、工作原理、设备组成和工艺流程,针对国内变压器真空汽相干燥工艺过程缺少理论依据的问题,较详细地叙述了作者所建立的反映变压器真空汽相干燥工艺过程热质传递规律的综合数学模型,说明其建模原理和模型功能。最后介绍了该模型在设备设计、过程模拟及工艺过程控制方面的应用。  相似文献   

5.
根据LM树脂产品的热特性要求,对干燥工艺与方法进行了分析研究,设计了由闪蒸干燥机和流化床干燥机组成的组合干燥系统。实际应用表明,该系统设计是合理的,它具有干燥效果好、能耗较省、产品质量符合要求、操作使用方便等优点。  相似文献   

6.
Based on the state of current research on battery electrode drying, a custom drying profile design is proposed and validated. It allows for drying time reduction, while the anodes’ mechanical integrity is maintained. In a tripartite process, the deterioration of the active layer adhesion to the substrate that is typically observed for increased drying rates is prevented through adjusting mild drying conditions in an intermediate drying stage. This stage is confined by two high drying rate stages which allow for reduction of the total drying time by about 40% compared to a reference drying process.  相似文献   

7.
在水力学直径为1.00 mm的方形T型微通道内,采用质量分数为40%的N-甲基二乙醇胺(MDEA)吸收含有体积分数为0.12%的H2S混合气体。实验发现,在微通道内可以获得很高的H2S脱除效率,在气液体积比为200∶1时,其脱除效率可以达到99.5%。在微通道内的H2S传质过程中,H2S传质的阻力主要集中在气侧,而且气侧体积传质系数随着气体和液体表观速率的增加而增加。提出了在过渡区的二相流型中,气侧体积传质系数的量纲一经验关联式,其计算值和实验值吻合得很好。通过比较发现,微通道比其他传统设备的气侧体积传质系数高出1—2个数量级。  相似文献   

8.
Abstract

A conjugate heat and mass transfer model was implemented into a commercial CFD code to analyze the convective drying of corn. The Navier–Stokes equations for drying air flow were coupled to diffusion equations for heat and moisture transport in a corn kernel during drying. Model formulation and implementation in the commercial software is discussed. Validation simulations were conducted to compare numerical results to experimental, thin-layer drying data. The model was then used to analyze drying performance for a compact, crossflow dehydrator. At low inlet air temperatures, the drying rate in the compact dehydrator matched the thin-layer drying rate. At higher temperatures, heat losses through the external walls resulted in temperature and moisture variations across the dehydrator.  相似文献   

9.
A steady-state, three-dimensional, multiphase computational fluid dynamics (CFD) modeling of a pilot-plant countercurrent spray drying tower is carried out to study the drying behavior of detergent slurry droplets. The software package ANSYS Fluent is employed to solve the heat, mass, and momentum transfer between the hot gas and the polydispersed droplets/particles using the Eulerian–Lagrangian approach. The continuous-phase turbulence is modeled using the differential Reynolds stress model. The drying kinetics is modeled using a single-droplet drying model, which is incorporated into the CFD code using user-defined functions (UDFs). Heat loss from the insulated tower wall to the surrounding is modeled by considering thermal resistances due to deposits on the inside surface, wall, insulation, and outside convective film. For the particle–wall interaction, the restitution coefficient is specified as a constant value as well as a function of particle moisture content. It is found that the variation in the value of restitution coefficient with moisture causes significant changes in the velocity, temperature, and moisture profiles of the gas as well as the particles. Overall, a reasonably good agreement is obtained between the measured and predicted powder temperature, moisture content, and gas temperature at the bottom and top outlets of the tower; considering the complexity of the spray drying process, simplifying assumptions made in both the CFD and droplet drying models and the errors associated with the measurements.  相似文献   

10.
The objective of this study is to estimate the drying characteristics of a relatively large material immersed in a fluidized bed under reduced pressure by measuring the constant drying rate. The constant drying-rate period in a fluidized bed under reduced pressure is difficult to measure because it is extremely short. To maintain the constant drying-rate period, distilled water is directly supplied to the drying material. Through our experiment, the heat transfer coefficient of the material surface was also determined. The results were compared with data on hot air drying. The constant drying rate is higher for fluidized bed drying than for hot air drying. It suggests that the heat transfer coefficient on the surface of the drying material is much larger for fluidized bed drying than for hot air drying. For fluidized bed drying, the effect of pressure in the drying chamber on the heat transfer coefficient is slight at the same normalized mass velocity of dry air (G/Gmf). The temperature difference between the inside of the drying chamber and the drying material is much smaller for fluidized bed drying than for hot air drying. The constant drying rate increases as the pressure in the drying chamber decreases.  相似文献   

11.
流化床氛围下多孔物料干燥传热传质的数值模拟   总被引:4,自引:1,他引:4  
王维  王璐瑶  许英梅  陈国华 《化工学报》2012,63(4):1044-1049
用有限差分法数值求解一个热、质传递耦合模型,理论研究多孔物料流化床干燥过程。方程离散采用全隐格式的控制容积方法,三对角矩阵法(TDMA)用来求解线性方程组。选用球形的苹果丁作为多孔物料。在典型操作条件下,通过分析温度、饱和度和压力的分布侧形,讨论了物料内部的热、质传递机理。在对比条件下,考察了气体入口温度、气速和床面积因子对干燥过程的影响。结果表明:干燥过程受气、固相间的耦合传热传质的影响十分明显,干燥时间随气体入口温度和气速的提高而减少;随床面积因子的增大而增加。  相似文献   

12.
Drying process plays an important role in the manufacturing of many products such as ceramic, kitchenware and building materials, some of which have complex three‐dimensional (3D) geometry. To deal with many restrictions found in literatures, a 3D numerical approach was used to describe the drying process of a porous Clay‐like material. The problem investigated involves highly coupled equations considering heat, mass, and mechanical aspects. The model is validated through the comparison of experimental measurements with simulation result. Simulation results show that increasing the initial moisture content and reducing the initial temperature have the same privilege and without significant increase in drying time, it reduces slightly the amount of maximum stress but delays the occurrence time of maximum stress. The nonuniform heat expansion induced stresses are very small in comparison to nonuniform moisture shrinkage induced stresses and can be neglected in drying simulation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1469–1478, 2018  相似文献   

13.
ABSTRACT

A finite difference scheme for solving the problem of natural transport of heat, mass, momentum and species concentration along vertical porous plates is presented. Several drying related problems are numerically solved, by including a gas-injection boundary condition directly into the governing equations. The effect of variable physical properties is investigated by means of direct comparison against experimental data obtained through holographic interferometry. The relative importance of wall diffusive and convective fluxes is examined. Sherwood and Nusselt numbers can be accurately obtained by means of the proposed techniques.  相似文献   

14.
Intermittent microwave convective drying (IMCD) is an advanced technology that improves both energy efficiency and food quality in drying. Modeling of IMCD is essential to understand the physics of this advanced drying process and to optimize the microwave power level and intermittency during drying. However, there is still a lack of modeling studies dedicated to IMCD. In this study, a mathematical model for IMCD was developed and validated with experimental data. The model showed that the interior temperature of the material was higher than the surface in IMCD, and that the temperatures fluctuated and redistributed due to the intermittency of the microwave power. This redistribution of temperature could significantly contribute to the improvement of product quality during IMCD. Limitations when using Lambert’s law for microwave heat generation were identified and discussed.  相似文献   

15.
Current microwave drying of food product models have generally neglected mass transfer physics, which have resulted in higher predicted temperatures within the food matrix. It is necessary to include mass transfer physics in modeling microwave drying of food products, especially when they are dry for longer durations. In the actual drying process, most of the dry material is a double-porous media formed by the mutual accumulation of porous media, and there is no systematic theory to analyze the drying process of double-porous media. This work presents a new theoretical model based on the ractive pellet bed to achieve the simulation of microwave drying in situation of stacked corns. Compared with the applicable to porous model and analyzed the difference, finally through the change of temperature and moisture was measured by experiments to verify the rationality and accuracy of the double-porous model.  相似文献   

16.
A finite difference scheme for solving the problem of natural transport of heat, mass, momentum and species concentration along vertical porous plates is presented. Several drying related problems are numerically solved, by including a gas-injection boundary condition directly into the governing equations. The effect of variable physical properties is investigated by means of direct comparison against experimental data obtained through holographic interferometry. The relative importance of wall diffusive and convective fluxes is examined. Sherwood and Nusselt numbers can be accurately obtained by means of the proposed techniques.  相似文献   

17.
In this study, a new model for the batch top-spray fluidized bed coating process is presented. The model is based on the one-dimensional (axial) discretization of the bed volume into different control volumes, in which the dynamic heat and mass balances for air, water vapor, droplets, core particles, and coating material were established. The coupling of the droplet phase's mass and heat transfer terms with the gas and solid phases was established by means of a droplet submodel in which droplet trajectories were individually simulated.

The model calculation method combines a Monte Carlo technique for the simulation of the particle exchange with the first-order Euler's method for solving the heat and mass balances, enabling the prediction of both the dynamic coating mass distribution and the one-dimensional (axial) thermodynamic behavior of the fluidized bed during batch operation. The simulation results were validated using experimental two-dimensional spatial air temperature and air humidity distributions, which were measured in a fluidized bed pilot reactor using a scanning probe.

Sensitivity analysis was carried out to study the effect of controllable process variables, such as fluidization air and atomization air properties, as well as the properties of the spraying liquid upon the simulated dynamic temperature and humidity distributions. Also, the effects of relevant process variables on growth rate uniformity and process yield were studied. Based on these sensitivity studies it was concluded that nozzle parameters, such as air pressure and positioning with respect to the bed, are as important as the fluidization air properties (humidity, temperature, and flow rate) for the coating growth rate uniformity and process yield.  相似文献   

18.
In this study, a new model for the batch top-spray fluidized bed coating process is presented. The model is based on the one-dimensional (axial) discretization of the bed volume into different control volumes, in which the dynamic heat and mass balances for air, water vapor, droplets, core particles, and coating material were established. The coupling of the droplet phase's mass and heat transfer terms with the gas and solid phases was established by means of a droplet submodel in which droplet trajectories were individually simulated.

The model calculation method combines a Monte Carlo technique for the simulation of the particle exchange with the first-order Euler's method for solving the heat and mass balances, enabling the prediction of both the dynamic coating mass distribution and the one-dimensional (axial) thermodynamic behavior of the fluidized bed during batch operation. The simulation results were validated using experimental two-dimensional spatial air temperature and air humidity distributions, which were measured in a fluidized bed pilot reactor using a scanning probe.

Sensitivity analysis was carried out to study the effect of controllable process variables, such as fluidization air and atomization air properties, as well as the properties of the spraying liquid upon the simulated dynamic temperature and humidity distributions. Also, the effects of relevant process variables on growth rate uniformity and process yield were studied. Based on these sensitivity studies it was concluded that nozzle parameters, such as air pressure and positioning with respect to the bed, are as important as the fluidization air properties (humidity, temperature, and flow rate) for the coating growth rate uniformity and process yield.  相似文献   

19.
Intermittent drying of materials is an alternative operation that aims at reducing energy consumption, improve the preservation of dried products or decrease effective drying time. Intermittent drying supplies the system with time-varying input air properties that are opposite to traditional operations, where air properties are constant at the dryer inlet. The major objective of this study is to establish the most satisfactory patterns of air temperature and velocity modulation at the dryer entrance to reduce energy consumption. This optimization study was based on a heterogeneous model for the drying of grains in fixed bed validated with experimental data. Intermittent and conventional operation experiments were conducted using equal energy consumption, and the influence of air temperature and velocity modulation on the drying rates related to the percentage of evaporated water were assessed. Results indicated that higher drying rates can be achieved under intermittent operation, and the validated model based on these results could reasonably predict temperature and moisture content profiles. Simulations pointed out that the best modulation patterns of air properties is a function of a variety of system conditions such as initial temperature and moisture content of both soybean and drying air. However, a tendency to reduce energy consumption was observed when the system operation is initially at high temperature and constantly at low velocity.  相似文献   

20.
采用静态法研究了明胶的平衡含湿质量分数,得到了20℃下吸湿和解吸等温线,结果表明,当空气相对湿度在16%—39%,存在吸湿滞后现象。在对流干燥实验台上进行了明胶干燥特性的实验,以不同厚度的明胶块为实验对象研究了热风温度、风速、湿度对干燥过程的影响。实验结果表明:明胶的干燥过程只有降速阶段,提高热风温度、加大风速均可以在前期提高干燥速率,但在干燥后期干燥速率反而降低;明胶块中心温度受胶块厚度、热风温度影响较大,而在实验范围内空气相对湿度的变化对明胶中心温度影响甚微;明胶的相对含湿质量分数随时间呈指数规律下降,提高风温、加大风速后明胶含湿质量分数在开始阶段下降较快,但最终含湿质量分数反而偏高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号