共查询到20条相似文献,搜索用时 11 毫秒
1.
Jnyana Ranjan Pati Subhajit Dutta Philippe Eliaers Pinakeswar Mahanta Pradip Kumar Chatterjee 《Drying Technology》2016,34(9):1073-1084
The intensification of interfacial mass, heat, and momentum transfer makes vortex chambers potentially interesting for the efficient drying of paddy, allowing shorter drying times and/or more compact equipment. The presence of a shell introduces particular challenges. Intraparticle diffusion limitations are strong and may reduce the advantage from intensified interfacial mass and heat transfer and the efficiency of air usage. Furthermore, high shear and normal stresses in the fast rotating particle bed may cause damage to the paddy shell, posing problems for transport and storage. With these specific aspects in mind, the use of vortex chambers for paddy drying is experimentally evaluated. 相似文献
2.
Current microwave drying of food product models have generally neglected mass transfer physics, which have resulted in higher predicted temperatures within the food matrix. It is necessary to include mass transfer physics in modeling microwave drying of food products, especially when they are dry for longer durations. In the actual drying process, most of the dry material is a double-porous media formed by the mutual accumulation of porous media, and there is no systematic theory to analyze the drying process of double-porous media. This work presents a new theoretical model based on the ractive pellet bed to achieve the simulation of microwave drying in situation of stacked corns. Compared with the applicable to porous model and analyzed the difference, finally through the change of temperature and moisture was measured by experiments to verify the rationality and accuracy of the double-porous model. 相似文献
3.
Final dewatering in the production of dry creped tissue is performed by Yankee drying, which includes hot pressing followed by simultaneous contact and impingement drying. The present study models Yankee drying and compares simulation results to the data obtained from trials on a pilot tissue machine. It advances models published previously by the representations developed for the transport of heat in the pressing stage and for the heat transfer involved in the dehydration of the cylinder coating spray. The model predicts an average specific drying rate within 4% in the range of the experimental data used. 相似文献
4.
简要介绍了变压器真空汽相干燥技术的用途、工作原理、设备组成和工艺流程,针对国内变压器真空汽相干燥工艺过程缺少理论依据的问题,较详细地叙述了作者所建立的反映变压器真空汽相干燥工艺过程热质传递规律的综合数学模型,说明其建模原理和模型功能。最后介绍了该模型在设备设计、过程模拟及工艺过程控制方面的应用。 相似文献
5.
Intermittent microwave convective drying (IMCD) is an advanced technology that improves both energy efficiency and food quality in drying. Modeling of IMCD is essential to understand the physics of this advanced drying process and to optimize the microwave power level and intermittency during drying. However, there is still a lack of modeling studies dedicated to IMCD. In this study, a mathematical model for IMCD was developed and validated with experimental data. The model showed that the interior temperature of the material was higher than the surface in IMCD, and that the temperatures fluctuated and redistributed due to the intermittency of the microwave power. This redistribution of temperature could significantly contribute to the improvement of product quality during IMCD. Limitations when using Lambert’s law for microwave heat generation were identified and discussed. 相似文献
6.
为降低生物质型煤干燥成本,提高干燥效率,研究热风干燥风速和温度对热风干燥特性的影响,拟合了生物质型煤在不同热风干燥条件下水分随时间变化的模拟曲线。结果表明:生物质型煤与多数多孔介质类似,干燥过程可分为加速干燥、恒速干燥、降速干燥3个阶段,其中恒速干燥阶段的干燥时间约25 min;热风温度越高,风速越大,生物质型煤的干燥速率越大,干燥时间越短,干燥时的裂纹率也越高。当干燥温度180℃,风速1.2 m/s时,生物质型煤热风干燥效果较好,干燥热效率最高为48.34%。通过对不同温度、风速条件下的生物质型煤干燥试验数据与常用干燥模型进行拟合分析,发现Sabbet干燥模型拟合度最好,当干燥温度180℃,风速1.2 m/s时相关性系数为0.997,二者相关性显著,因此Sabbet干燥模型可较好地反映生物质型煤在不同温度、风速下的干燥特性。 相似文献
7.
AbstractA conjugate heat and mass transfer model was implemented into a commercial CFD code to analyze the convective drying of corn. The Navier–Stokes equations for drying air flow were coupled to diffusion equations for heat and moisture transport in a corn kernel during drying. Model formulation and implementation in the commercial software is discussed. Validation simulations were conducted to compare numerical results to experimental, thin-layer drying data. The model was then used to analyze drying performance for a compact, crossflow dehydrator. At low inlet air temperatures, the drying rate in the compact dehydrator matched the thin-layer drying rate. At higher temperatures, heat losses through the external walls resulted in temperature and moisture variations across the dehydrator. 相似文献
8.
The main objective of this work was to experimentally and numerically investigate the Liu Shu River oil shale drying by the means of flue gas in a fluidized bed dryer. Several experiments were performed under different temperatures conditions. The moisture content of oil shale was measured during the experiments. The two-stage drying model was incorporated in computational fluid dynamics (CFD) package FLUENT via user-defined functions (UDF) and utilized for simulation of heat and mass transfer of oil shale drying in the fluidized bed dryer. The simulation results for solid moisture content agreed well with experimental data. The effects of the temperature and velocity of flue gas, initial bed height, and the particle size on the drying characteristics were predicted and analyzed. It is shown that the gas temperature and velocity are the important parameters in the whole drying process. The particle size has more obvious influence in the falling drying period than the constant drying period. The temperatures of gas and solid phases were monitored. It is shown that the so-called “near gas distributor zone” is the most effective heat transfer zone, which agrees well with the calculated value. The system quickly reached thermal equilibrium, characterizing a nearly isothermal bed. The developed model provides a very good demonstration to describe the oil shale drying in the fluidized bed dryer, and may provide important information for design, optimization of operation conditions. 相似文献
9.
Muzammil Ali Tariq Mahmud Peter John Heggs Mojtaba Ghadiri Dusan Djurdjevic Hossein Ahmadian Luis Martin de Juan Carlos Amador Andrew Bayly 《Chemical Engineering Research and Design》2014
A one-dimensional numerical model for a detergent slurry drying process in a counter-current spray drying tower is developed for the prediction of the gas and droplet/particle temperature profiles within the tower. The model accommodates droplets/particles over a range of sizes. A semi-empirical slurry droplet drying model is integrated with a counter-current tower simulation based on mass, energy and particulate phase momentum balances in order to calculate the drying rate and the particle residence time within the tower. The coupled first order ordinary differential equations for the two phases are solved numerically using the iterative shooting method in an algorithm developed within MATLAB. The predictions of the numerical model are compared with industrial pilot plant data. The results are found to vary significantly with the specified size distribution of the droplets. Despite the simplicity of the model in ignoring the coalescence, agglomeration, wall deposition and re-entrainment, the model gives reasonable agreement with the experimental data. 相似文献
10.
H. Majdi 《Drying Technology》2019,37(6):722-734
In this study, a novel method for numerical simulation of drying is proposed and the process is optimized by Taguchi method. A 2D numerical solution is performed to analyze coupled heat and mass transfer occurring during drying of a rectangular moist object. The dryer section and the moist object are conjugately simulated where the coupled heat and mass transfer equations are solved together. The lattice Boltzmann method is employed to solve hydrodynamic, heat, and mass transfer equations. This study applied the Taguchi method to determine optimum conditions for drying so as to minimize the drying time and energy consumption. The control factors included temperature, air velocity, and thickness ratio (the moist object thickness to channel width). The following optimal conditions were obtained: temperature (T?=?60?°C), velocity (V?=?0.1 m/s), and thickness ratio (TR =0.1). The results of numerical solution are then compared to the measured data available in the literature, presenting a reasonable agreement. 相似文献
11.
M. Heydari K. Khalili S. Y. Ahmadi‐Brooghani 《American Institute of Chemical Engineers》2018,64(4):1469-1478
Drying process plays an important role in the manufacturing of many products such as ceramic, kitchenware and building materials, some of which have complex three‐dimensional (3D) geometry. To deal with many restrictions found in literatures, a 3D numerical approach was used to describe the drying process of a porous Clay‐like material. The problem investigated involves highly coupled equations considering heat, mass, and mechanical aspects. The model is validated through the comparison of experimental measurements with simulation result. Simulation results show that increasing the initial moisture content and reducing the initial temperature have the same privilege and without significant increase in drying time, it reduces slightly the amount of maximum stress but delays the occurrence time of maximum stress. The nonuniform heat expansion induced stresses are very small in comparison to nonuniform moisture shrinkage induced stresses and can be neglected in drying simulation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1469–1478, 2018 相似文献
12.
流化床氛围下多孔物料干燥传热传质的数值模拟 总被引:4,自引:1,他引:4
用有限差分法数值求解一个热、质传递耦合模型,理论研究多孔物料流化床干燥过程。方程离散采用全隐格式的控制容积方法,三对角矩阵法(TDMA)用来求解线性方程组。选用球形的苹果丁作为多孔物料。在典型操作条件下,通过分析温度、饱和度和压力的分布侧形,讨论了物料内部的热、质传递机理。在对比条件下,考察了气体入口温度、气速和床面积因子对干燥过程的影响。结果表明:干燥过程受气、固相间的耦合传热传质的影响十分明显,干燥时间随气体入口温度和气速的提高而减少;随床面积因子的增大而增加。 相似文献
13.
PVC干燥动力学研究 总被引:1,自引:0,他引:1
实验研究了悬浮法PVC的干燥特性。在测定物料流化参数的基础上,采用单层筒形流休床测定干燥动力学曲线,并回归得到描述PVC干燥特性曲线的解析函数;确定了实验条件下PVC干燥的临界湿含量xc及传质系数K。由于实验方法比较接近工业干燥过程。获得的结果对于工程应用较为可靠。 相似文献
14.
Zhenyu Huang Hyun Su Lee Michael Senra H. Scott Fogler 《American Institute of Chemical Engineers》2011,57(11):2955-2964
Wax deposition in subsea pipelines is a significant economic issue in the petroleum industry. A mathematical model has been developed to predict the increase in both the deposit thickness and the wax fraction of the deposit using a fundamental analysis of the heat and mass transfer for laminar and turbulent flow conditions. It was found that the precipitation of wax in the oil is a competing phenomenon with deposition. Two existing approaches consider either no precipitation (the independent heat and mass transfer model) or instantaneous precipitation (the solubility model) and result in either an overprediction or an underprediction of deposit thickness. By accounting for the kinetics of wax precipitation of wax in the oil (the kinetic model), accurate predictions for wax deposition for both lab‐scale and pilot‐scale flow‐loop experiments with three different oils were achieved. Furthermore, this kinetic model for wax precipitation in the oil was used to compare field‐scale deposition predictions for different oils. © 2011 American Institute of Chemical Engineers AIChE J, 2011 相似文献
15.
16.
A model was developed to study the drying rate of biopolymer films. The diffusivity of water in this biopolymer film is an exponential function of the water concentration. This creates a situation where simply increasing gas velocity can decrease the actual drying rate. The model revealed that the main factor limiting the drying of the biopolymer film was a significant and rapid decrease in the diffusivity of water through the film as the film dried. To avoid this a pulsing scheme was proposed where the velocity of the drying gas would be varied during the experiment; this variation allowed for a compromise between a high overall drying rate and maintaining a high diffusivity within the film. It was found that the optimum combination of gas velocities was 0.8 and 0.6 m/s with a duration of 10 min at the high and low gas velocities. 相似文献
17.
Mohsen Heydari Khalil Khalili Yousef Ahmadi-Brooghani 《American Institute of Chemical Engineers》2020,66(11):e16985
Drying process of industrial green in-process products especially those susceptible to cracking, need great care, and optimally arrangement of parameters of convective drying. Intermittent drying is a new technique in drying area and is a promising solution for product quality enhancement. The intermittent drying with variable air temperature and the intermittent drying with variable air humidity are the most used techniques. The current study is devoted to 3D modeling and simulation of intermittent drying with variations of both air humidity and temperature and it is then compared with each of the cases of the intermittent drying with variable air temperature and the intermittent drying with variable air humidity. It was observed that the best dried product quality was obtained in intermittent drying with periodic changes of air temperature. Vapor condensation in the intermittent drying with variable air humidity is an undesirable phenomenon that significantly reduces the effectiveness of this process. 相似文献
18.
Muzammil Ali Peter John Heggs Mojtaba Ghadiri Andrew Bayly Hossein Ahmadian 《Drying Technology》2017,35(3):281-299
A steady-state, three-dimensional, multiphase computational fluid dynamics (CFD) modeling of a pilot-plant countercurrent spray drying tower is carried out to study the drying behavior of detergent slurry droplets. The software package ANSYS Fluent is employed to solve the heat, mass, and momentum transfer between the hot gas and the polydispersed droplets/particles using the Eulerian–Lagrangian approach. The continuous-phase turbulence is modeled using the differential Reynolds stress model. The drying kinetics is modeled using a single-droplet drying model, which is incorporated into the CFD code using user-defined functions (UDFs). Heat loss from the insulated tower wall to the surrounding is modeled by considering thermal resistances due to deposits on the inside surface, wall, insulation, and outside convective film. For the particle–wall interaction, the restitution coefficient is specified as a constant value as well as a function of particle moisture content. It is found that the variation in the value of restitution coefficient with moisture causes significant changes in the velocity, temperature, and moisture profiles of the gas as well as the particles. Overall, a reasonably good agreement is obtained between the measured and predicted powder temperature, moisture content, and gas temperature at the bottom and top outlets of the tower; considering the complexity of the spray drying process, simplifying assumptions made in both the CFD and droplet drying models and the errors associated with the measurements. 相似文献
19.
Pneumatic conveying drying (PCD) is a widely used process in the industries and is a combination of heat and mass transfer and pneumatic handling technology. Drying processes consume large amounts of energy and, therefore, reduction in operating cost will be extremely beneficial for the industry. Many studies have been conducted to model and optimize the pneumatic drying. This review article focuses on the different strategies used in the literature to model pneumatic drying processes. An analysis is provided for the different mathematical modeling and its components such as balance and complementary equations and modeling assumptions. Two-fluid theory, Eulerian granular, and the discrete element method are reviewed as well as gas–solid flow modeling methods. In addition, the numerical methods and the main studied parameters in the field of pneumatic drying are investigated. To this end, heat and mass transfer coefficients, gas and dispersed phase properties are reviewed. 相似文献
20.
A finite difference scheme for solving the problem of natural transport of heat, mass, momentum and species concentration along vertical porous plates is presented. Several drying related problems are numerically solved, by including a gas-injection boundary condition directly into the governing equations. The effect of variable physical properties is investigated by means of direct comparison against experimental data obtained through holographic interferometry. The relative importance of wall diffusive and convective fluxes is examined. Sherwood and Nusselt numbers can be accurately obtained by means of the proposed techniques. 相似文献