首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the extraction of strontium nitrate from aqueous nitric acid solutions into a series of hydrophobic N-(1-hydroxyalkyl)-N’-alkylimidazolium bis[(trifluoromethyl)sulfonyl]imides by dicyclohexano-18-crown-6, a correlation has been demonstrated between the conditional extraction constant of strontium (K’ex,Sr) and the concentration of water in the equilibrated ionic liquid (IL) phase. Despite the absence of a hydroxyl group on the IL cation, essentially the same relationship is observed for the analogous N,N’-dialkylimidazolium ILs. In both instances, the correlation is attributed to the coextraction of the hydrated nitrate ion and its solvation by the hydrated diluent. Transitions of water in the attenuated total reflectance-infrared spectra of the ILs are consistent with the existence of multiple states of water. The extraction efficiency for a given water content is greater for the ILs examined than for conventional solvents (i.e., n-alcohols). When coupled with existing knowledge of the factors influencing cation partitioning into ILs, these results provide insight into the IL structural characteristics required to effect efficient metal ion extraction from acidic media.  相似文献   

2.
《分离科学与技术》2012,47(10):2047-2063
Abstract

The unique physicochemical properties of ionic liquids (ILs) and the relative ease with which these properties can be fine‐tuned by altering the cationic or anionic moieties comprising the IL have led to intense interest in their use as alternatives to conventional organic solvents in a wide range of synthetic, catalytic, and electrochemical applications. Recent work by a number of investigators has been directed at the application of ionic liquids in various separation processes, among them the liquid‐liquid extraction of metal ions. Although certain IL‐extractant combinations have been shown to yield metal ion extraction efficiencies far greater than those obtained with molecular organic solvents, other work suggests that the utility of ILs may be limited by solubilization losses and difficulty in recovering extracted metal ions. In this report, recent efforts to overcome these limitations are described, and progress both in achieving an improved understanding of the fundamental aspects of metal ion transfer into ILs and in devising viable IL‐based systems for metal ion separation is detailed. In addition, areas upon which future research efforts might profitably be focused are identified.  相似文献   

3.
Ionic liquid/s (IL/ILs) are ideal solvents for many separation processes, such as cellulose dissolution, extraction of heavy metal ions and coal liquefaction residues, etc. During the above processes, ILs would inevitably remain in effluents. Due to their high costs and potential detrimental impacts on environment, it is extremely important to recycle ILs from dilute aqueous solutions. Electrodialysis (ED) was used for primary separation and recycling ILs. In order to evaluate the performance of ED process, the effects of initial concentration, applied voltage and initial volume of the dilute solutions on the overall current efficiency (η), recovery ratio (R) and concentration ratio (ω) were investigated. Among these experimental results, the highest recovery ratio could reach 85.2% and the highest overall current efficiency could reach 80.9%. The ED energy consumption is also discussed and the highest specific energy consumption (Re) could reach about 1350 g/kW h. The effects of IL cation and anion sizes on concentrating process are also evaluated. The experimental results indicate that ED is an effective method to concentrate IL aqueous solutions.  相似文献   

4.
Ionic liquids (ILs) have evolved as a new type of non‐aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions; on the other hand, it is important to systematically analyze methods that have been developed for stabilizing and activating enzymes in ILs. This review discusses the biocatalysis in ILs from two unique aspects (1) factors that impact the enzyme's activity and stability, (2) methods that have been adopted or developed to activate and/or stabilize enzymes in ionic media. Factors that may influence the catalytic performance of enzymes include IL polarity, hydrogen‐bond basicity/anion nucleophilicity, IL network, ion kosmotropicity, viscosity, hydrophobicity, the enzyme dissolution, and surfactant effect. To improve the enzyme's activity and stability in ILs, major methods being explored include the enzyme immobilization (on solid support, sol–gel, or CLEA), physical or covalent attachment to PEG, rinsing with n‐propanol methods (PREP and EPRP), water‐in‐IL microemulsions, IL coating, and the design of enzyme‐compatible ionic solvents. It is exciting to notice that new ILs are being synthesized to be more compatible with enzymes. To utilize the full potential of ILs, it is necessary to further improve these methods for better enzyme compatibility. This is what has been accomplished in the field of biocatalysis in conventional organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Abstract

The nature of the ionic‐liquid (IL) anion has been found to have a remarkable effect on the solvent extraction of Sr2+ and Cs+ by dicyclohexano‐18‐crown‐6 dissolved in ionic liquids. In particular, the extraction efficiency increases with the hydrophobicity of the IL anion as reflected by the solubility in water of ILs having a common cation. Since a cation‐exchange mechanism is operating in these systems, the influence of the IL anion is in large part attributable to an expected Le Chatelier effect in which a greater aqueous concentration of IL cation, obtained when using an IL anion of lower hydrophobicity, opposes cation exchange. This dependence is opposite to that found for IL cations, indicating a significant advantage of using ILs with hydrophobic anions for cation extraction. Furthermore, the extraction selectivity for Sr2+ over Na+, K+, and Cs+ can be significantly improved through the use of hydrophobic anions for the ILs containing 1‐ethyl‐3‐methylimidazolium or 1‐butyl‐3‐methylimidazolium cations.  相似文献   

6.
《分离科学与技术》2012,47(1):38-44
Hydrophobic ionic liquids (ILs) were generated by association between a cationic ester derivative of betaine and bis(trifluoromethylsulfonyl)imide (Tf2N?) or dicyanamide (Dca?) anions. Extraction of Cu(II), Ni(II), Pb(II), and Cd(II) from water was performed with these ILs at room temperature. The use of Dca? anion greatly enhances the extraction efficiency of IL phase towards metal ions extraction. The metal could be back-extracted from the ionic liquid phase with aqueous EDTA solutions. The metal extractability of the ionic liquid after the back-extraction is equivalent to that of the fresh mixture showing that ionic liquid can be reused for several extraction and back-extraction cycles.  相似文献   

7.
BACKGROUND: Ionic liquids (ILs) as environmentally benign solvents have been widely studied in the application of solvent extraction. However, few applications have been successfully industrialized because of the difficult stripping of metal ions or the loss of components of the ILs. More work needs to be done to investigate the extraction behaviour of IL‐based extraction systems. In this work, the extraction behaviour of Ce(IV), Th(IV) and some trivalent rare earth (RE) nitrates by di(2‐ethylhexyl) 2‐ethylhexylphosphonate (DEHEHP) in the IL, 1‐methyl‐3‐octylimidazolium hexafluorophosphate ([C8mim]PF6), was investigated and compared with that in the n‐heptane system. In particular, the effect of F(I) on the extraction mechanism for Ce(IV) and its separation from Th(IV) was investigated. Otherwise, the recovery efficiency of Ce(IV) and F(I) from a practical bastnasite leach liquor was examined using IL based extraction. RESULTS: Similar selectivity (Ce(IV) > Th(IV) ? RE(III)) was observed in both the IL and n‐heptane systems. The existence of F(I) had a large negative impact on the extraction and separation of Ce(IV). An identical process for the extraction of Ce(NO3)4 containing F(I) by DEHEHP in both IL and n‐heptane was achieved under appropriate conditions. The Ce(IV) in the IL phase may be quantitatively back extracted and may be recovered as part of high purity CeF3 and cerium sulfate. CONCLUSION: It is possible for IL to act as an environmentally benign solvent for the recovery of Ce(IV) and F(I) from bastnasite in rare earth hydrometallurgy. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Room temperature ionic liquids (ILs) are attractive alternatives to environmentally unfriendly volatile organic solvents. Partitioning is one of the most important and fundamental properties of a chemical, and the octanol/water partition coefficient is widely used to measure the tendency of a chemical to cross biological membranes. However, there is very limited information on the concentration dependence of the partition coefficients of ILs. This study investigated the octanol/water partitioning of 1‐butyl‐3‐methylimidazolium ([bmim]) ILs containing either hexafluorophosphate ([PF6]) or bis[(trifluoromethyl)sulfonyl]amide ([Tf2N]) over a wide range of IL concentrations of three to five orders of magnitude. RESULTS: It was found that the apparent partition coefficients of the ILs increased with increasing IL concentration. A model based on the ionic nature of ILs was proposed to explain this behaviour, and the results showed a good fit with the experimental data. The intrinsic partition coefficients and dissociation constants of the ILs were determined using the equations from the proposed model. The differences in the intrinsic partition parameter values between the two ILs showed a good correlation with other physicochemical properties. CONCLUSIONS: The present study clearly shows that the octanol/water partition coefficients of ILs increase with increasing IL concentration owing to the formation of ion pairs. By using the proposed partition model, it was possible to determine the intrinsic partition coefficients of ILs, and it was found that the apparent partition coefficients of ILs converge to the intrinsic partition coefficients of the ionic species and ion pairs of ILs with decreasing and increasing IL concentration respectively. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of the Hofmeister effect on protein stabilization continues to be questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. This review first discusses the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, this paper further evaluates the structural properties of ILs and molecular‐level interactions in neat ILs and their aqueous solutions. Next, the specific ion effects of ILs on enzyme stability and activity are systematically compared and it is concluded that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen‐bond basicity, nucelophilicity, and hydrophobicity, etc.) are playing leading roles. In addition, some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule are demonstrated. © 2015 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Separation and recovery of zinc from ammoniacal solutions with solvent extraction is very important in the hydrometallurgical industry. Ionic liquids (ILs) have considerable potential for the separation of metal ions. The extraction behaviour of zinc from ammoniacal solution into three hydrophobic ILs was investigated using β‐diketone as the extractant. RESULTS: The extraction efficiency of zinc for three ILs reached a maximum at pH 7.5 and subsequently decreased with increase of pH and it also decreases with increase of the total ammonia concentration. The overall extraction process is exothermic. The extractability decreases in the IL order: [BMIM]NTf2 > [OMIM]PF6 > [OMIM]NTf2. The results of X‐ray absorption spectra indicate that the coordination number of the extracted zinc complexes decreases with increase in the hydrophobicity of the ILs. The results of five recycling experiments indicate that the three hydrophobic ILs are more stable than [BMIM]PF6 for the extraction of zinc in ammoniacal solutions. CONCLUSION: Hydrophobic ILs combined with β‐diketone can be used to extract zinc from ammoniacal solutions. The extraction of zinc is dependent on the zinc species in ammoniacal solutions and the hydrophobicity of ILs. Moreover, the latter affects both the extractability of extraction systems and the structure of the extracted complexes. © 2012 Society of Chemical Industry  相似文献   

11.
Ionic liquids (ILs) are promising solvents for the aromatic extraction process. An attractive characteristic is the existence of hundreds of ILs that exhibit different properties. To identify key properties of IL solvents for an energy-optimum aromatic extraction, we use process simulation to generate the process datasets for multivariate data analytics with partial least squares, and use science-guided fundamentals to develop an IL heat load variable (HLV). We consider 16 well-studied ILs and correlate process steam duty and process variables affecting equipment size to the HLV for ethylene cracker feeds of low aromatic content. For such feeds in an IL aromatic extraction process, 11 of 16 ILs show energy advantage compared with sulfolane solvent with the lowest energy IL process requiring 57% of total energy required for an equivalent sulfolane process. Our results facilitate the IL solvent selection for pilot tests and subsequent commercialization of an IL aromatic extraction process.  相似文献   

12.
Several molecular polar solvents have been used as solvents of the more polar phase in the solvent extraction (SX) of metals. However, the use of hydrophilic ionic liquids (ILs) as solvents has seldomly been explored for this application. Here, the hydrophilic IL ethylammonium nitrate (EAN), has been utilized as a polar solvent in SX of transition metal nitrates by tri-n-butyl phosphate (TBP). It was found that the extraction from EAN is considerably stronger than that from a range of molecular polar solvents. The main species of Co(II) and Fe(III) in EAN are likely [Co(NO3)4]2− and [Fe(NO3)4], respectively. The extracted species are likely Fe(TBP)3(NO3)3 and a mixture of Co(TBP)2(NO3)2 and Co(TBP)3(NO3)2. The addition of H2O or LiCl to EAN reduces the extraction because the metal cations coordinate to water molecules and chloride ions stronger than to nitrate ions. This study highlights the potential of using hydrophilic ILs to enhance SX of metals.  相似文献   

13.
《分离科学与技术》2012,47(8):2072-2089
Abstract

In this paper, we demonstrate that the hydrophobic ionic liquid (IL) such as 1-hexyl-3-methyl imidazolium hexafluorophosphate, [hmim][PF6], with silver salt, e.g. AgBF4, is an excellent extraction phase to separate and enrich omega-3 polyunsaturated fatty acid methyl esters (PUFAMEs) from the mixed solution containing closely related saturated, monounsaturated or diunsaturated fatty acid methyl esters. With this silver salt-ionic liquids extraction phase, the health-beneficial omega-3 PUFAMEs such as methyl ester of all-cis-5,8,11,14,17-eicosapentaenoic acid (20:5 or EPA) and methyl ester of all-cis-4,7,10,13,16,19-docosahexaenoic acid (22:6 or DHA) were largely enriched from 18% (wt %) in the original cod liver oil to greater than 80% in the 1-hexene stripping solvent. The unique properties of nonvolatility and adequate polarity allow ILs to dissolve or suspend silver salts and to be conveniently adopted as extraction phase in separating PUFAMEs. The ILs with different hydrophobicities and different silver salts were screened to obtain an optimal combination of IL and silver salt with the highest extraction capability and selectivity. The screening results showed that AgBF4 exhibited high extraction capability in the hydrophobic ILs but little or no extraction capability in the hydrophilic ILs. Furthermore, the high extraction capability of AgBF4 in hydrophobic ILs was much greater than that of AgBF4 in traditional silver-water or silver-alcohol extraction systems. Pretreating the silver-ILs extraction phase with steric hindered short chain olefins could significantly enhance its extraction selectivity for PUFAMEs. Nine runs of the IL-silver extraction phase showed no obvious decrease in its extraction capabilities and selectivities.  相似文献   

14.
Ionic liquids (ILs) functionalized solvent impregnated resins (SIRs) were prepared using IL modified Merrified resin as the polymeric supports by impregnation of extractant for extraction of Sc(III). The ILs modified Merrifield resin were prepared via covalent anchoring of imidazolium salts onto Merrifield resin. The polymeric supports with imidazolium chloride group (RCl) and imidazolium hexafluorophosphate group (RPF6) were characterized by FTIR, TGA, and elemental analysis. It was found that RCl and RPF6 had tunable hydrophilicity and hydrophobicity, different acid stability, and swelling behaviors in solvents. The effect of Cyanex 923 extractant or [C8mim][PF6] IL impregnated on RCl and RPF6 were studied. The results showed Cyanex 923 and [C8mim][PF6] exhibited stronger affinity to RPF6 than to RCl. RPF6 with Cyanex 923 was found to be effective in Sc(III) extraction. The extraction mechanisms of SIRs containing RPF6 and Cyanex 923 with or without [C8mim][PF6] were cation exchange and neutral complexation, respectively. [C8mim][PF6] acted as an extraction media and was involved in the cation exchanged extraction reaction. Sc(III) can be selectively separated from Tm(III), Yb(III), and Lu(III) by the SIRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design of ILs for this process is still scarce. The UNIFAC‐IL model is extended first to describe the EDS system based on exhaustive experimental data. Then, based on the obtained UNIFAC‐IL model and group contribution models for predicting the melting point and viscosity of ILs, a mixed‐integer nonlinear programming (MINLP) problem is formulated for the purpose of computer‐aided ionic liquid design (CAILD). The MINLP problem is solved to optimize the liquid‐liquid extraction performance of ILs in a given multicomponent model EDS system, under consideration of constraints regarding the IL structure, thermodynamic and physical properties. The top five IL candidates preidentified from CAILD are further evaluated by means of process simulation using ASPEN Plus. Thereby, [C5MPy][C(CN)3] is identified as the most suitable solvent for EDS. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1013–1025, 2018  相似文献   

16.
Abstract

The extraction of microquantities of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y by N,N′‐dimethyl‐N,N′‐diphenyl‐3‐oxapentanediamide (DMDPhOPDA) in 1,2‐dichloroethane from aqueous media containing ClO4 ?, PF6 ?, (CF3SO2)2N? anions or by DMDPhOPDA in 1,2‐dichloroethane in the presence of 1‐butyl‐3‐methylimidazolium bis[(trifluoremethyl)sulfonyl]imide ([C4mim][Tf2N]) and 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C4mim][PF6]) from HNO3 solutions has been studied. The effect of HNO3 concentration in the aqueous phase and that of the extractant concentration in the organic phase on the extraction of metal ions is considered. The stoichiometry of the extracted complexes has been determined. The addition of HPF6 and (CF3SO2)2NH or their salts to the aqueous HNO3 or HCl solutions leads to an enchancement of lanthanides (III) extraction by DMDPhOPDA. A considerable synergistic effect was observed in the presence of ionic liquids (IL) in the organic phase containing DMDPhOPDA. This effect is connected with the hydrophobic nature of the IL anion. The distribution of ILs between the equilibrium organic and aqueous phases can govern the extractability of lanthanides (III) in DMDPhOPDA‐IL systems.  相似文献   

17.
《分离科学与技术》2012,47(12):1895-1902
Extraction of uranium (UO22+) and thorium (Th4+) from a nitric acid solution into an imidazolium-type ionic liquids (ILs) of 1-alkyl-3-methylimidazolium hexafluorophosphate ([Cnmim][PF6], n = 6 or 8) was carried out using N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) as an extractant. It was found that the extraction efficiencies of UO22+ and Th4+ ions are higher in comparison with that done in n-dodecane. The extraction mechanism was deduced by the slope analysis and extraction experiment. Transfer of both ions is assumed to proceed predominantly through the neutral solvation mechanism from nitric acid solution into ILs. The UO22+ ion forms a 1:2 complex with TODGA in ILs at lower acidity, and a 1:1 complex in ILs and in n-dodecane at higher acidity. The Th4+ ion forms a 1:2 complex with TODGA in C6mimPF6 IL or a 1:1 complex in C8mimPF6 IL at lower acidity and a 1:1 complex in both ILs, and n-dodecane at higher acidity. Stripping studies were conducted using sodium salt of EDTA as a stripping ligand. The thermodynamics of extracting UO22+ ions and Th4+ ions from a 3 M HNO3 solution was also studied. The results indicated that the extraction reactions are spontaneous and go through an exothermic process.  相似文献   

18.
The extraction of microquantities of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y from nitric acid solutions into an organic phase containing N,N′-bis(diphenylphosphinyl-methylcarbonyl)diaza-18-crown-6 and ionic liquid (IL) 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTf2N) has been studied. The effect of HNO3 concentration in the aqueous phase and that of the extractant and IL concentration in the organic phase on the extraction of metal ions is considered. The stoichiometry of the extracted complexes has been determined. A considerable synergistic effect was observed in the presence of IL in the organic phase containing a neutral organophosphorus ligand. This effect is connected with the hydrophobic nature of the IL anion. The partition of IL between the equilibrium organic and aqueous phases is the dominant factor governing the extractability of lanthanide (III) ions in the extraction system. The potentialities of polymeric resin impregnated with compound I and BMImTf2N for the preconcentration of lanthanides(III) from nitric acid solutions are demonstrated.  相似文献   

19.
The influence of the ionic liquid (IL) 1-ethyl-3-methylimidazoliumethylsulfate ([EMIM]EtSO4) on the polymerization kinetics of methyl methacrylate was investigated. ILs are liquids with relatively high polarities and viscosities. These two characteristic properties are strongly correlated with the rate coefficients of propagation kp and termination kt of polymerizations carried out in ILs. The rate constant of termination kt decreases when the concentration of ionic liquid, and thus the viscosity is increased, whereas the propagation rate coefficient kp increases with increasing IL content. The viscosity of ILs can be varied by either working with mixtures of ILs with conventional organic solvents – here the IL [EMIM]EtSO4 was mixed with dimethyl formamide (DMF) – or by variation of the temperature. The studies were carried out to determine the influence of the viscosity on the propagation and the termination reaction as well as the molecular weight distribution.  相似文献   

20.
《分离科学与技术》2012,47(12):1740-1747
Various ionic liquid-based aqueous two-phase systems (IL-ATPS) were evaluated to extract puerarin. The results indicated that the nature of ILs, the salting-out ability of salt, and the acidity and basicity of the salt-rich solution had important influence on the extraction efficiency. Various factors were optimized systematically, that is, the amount of IL, salt, puerarin, and short-chain alcohol. Under the optimal experimental conditions (the amount of K2HPO4 0.30–0.42 g/mL, [Bmim]Br 0.30–0.36 g/mL and 1.0 mL puerarin stock solution), the extraction efficiency of puerarin was over 99% by a single-step extraction, which indicated that the evaluated IL-ATPS was a prospective extraction medium. Finally, the IL-ATPS was successfully used to extract puerarin from Radix Puerariae Lobatae extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号