首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FINITE ELEMENT SIMULATION OF ROUGH RICE DRYING   总被引:1,自引:0,他引:1  
Milled, brown and rough rice samples were dried in the laboratory with heated air and diffusivities of the endosperm, bran and husk were evaluated with a search technique using the finite element method. The endosperm had the highest diffusivity. The husk had a slightly higher diffusivity than the bran because the trapped air inside the husk was considered as an integral part of the husk. The finite element method predicted rough rice drying that was in good agreement with experimental results.  相似文献   

2.
Ganoderma is normally dried to extend its shelf life without using chemical preservative and to concentrate the medicinal value in the fruiting body. Convective hot air drying characteristics of Ganoderma tsugae Murrill were evaluated in hot air circulated oven at different drying temperatures, sizes, and air flow rates. The drying kinetics of Ganoderma tsugae in kidney shape and slices were investigated and compared at different drying conditions. The variation of effective moisture diffusivity values at decreasing moisture contents during drying was determined from the drying data. Four well-known thin-layer drying models were fitted to the experimental data and the Midilli model was found to satisfactory describe the drying characteristics of kidney-shaped Ganoderma tsugae. Ganoderma tsugae dried at 50°C with air velocity of 1.401 ms?1 showed the highest retention of crude ganoderic acid content compared to other drying conditions.  相似文献   

3.
Abstract

This study investigated the quality and drying kinetics of instant parboiled rice fortified with turmeric (IPRFT) by using hot air (HA) and microwave-assisted hot air (MWHA) drying. The cooked long grain parboiled rice (LGPR) fortified with turmeric was dried with HA at temperatures of 65, 80, 95, and 110?°C. The microwave power density of 0.588 Wg?1 was incorporated for drying with MWHA. Drying was performed until the dried IPRFT reached 16% (d.b.) of moisture content. The quality of the dried IPRFT was evaluated in terms of color, total phenolics content (TPC), total antioxidant capacity (TAC), rehydration ratio, volume expansion ratio, texture and microstructure. The results showed that the incorporation of microwave power with HA drying helped to reduce the drying time by 50% compared to conventional HA drying. A prediction of the moisture ratio by using the Page model provided the best R2 and RMSE in drying kinetics. The drying conditions had small effects on the color, TPC, TAC, and microstructure of the dried IPFRT. The rehydration ratio, volume expansion ratio and texture of the rehydrated IPFRT showed minimal variations from changes in the drying conditions. The TPC and TAC of the dried IPRFT clearly increased compared to the TPC and TAC of the initial LGPR.  相似文献   

4.
This study aimed to develop a suitable drying model for microwave vibro-fluidized bed drying in a single-mode applicator (MVFB-SMA drying) of cooked rice with and without prefreezing treatment and to investigate the effects of prefreezing treatment and drying temperature (110–185°C) on quality of dried cooked rice. During the process of drying cooked rice from 60 to 10% (wet basis), results indicated that drying rate increased, whereas drying time decreased with prefreezing treatment and increased drying temperature. The drying rate and drying time of unfrozen and frozen cooked rice ranged from 0.196 to 0.497 g water/g dry matter/min and 0.228 to 0.554 g water/g dry matter/min; and from 7 to 2.5 min and 5.5 to 2 min, respectively. A new model was proposed in this study (MR = exp(?k t n ) + bt + c) to compare with 11 commonly used drying models. The new model describes the MVFB-SMA drying data most satisfactorily. The values of effective diffusivity were between 1.70 × 10?7 and 5.72 × 10?7 m2/s for the unfrozen sample and between 1.99 × 10?7 and 5.86 × 10?7 m2/s for the frozen sample. Their activation energy values were 23.66 and 21.19 kJ/mol, respectively. Prefreezing treatment provided a whiter product with a less uniform porous structure and higher bulk density. Slower ability to rehydrate was also observed for the frozen cooked rice dried at 160 and 185°C. An increase in drying temperature resulted in changes in whiteness, microstructure, bulk density, and rehydration capability. No prefreezing treatment and drying at 160°C seemed to be the optimal process condition for cooked rice, ensuring whiteness, a porous structure, low bulk density, and high rehydration capability.  相似文献   

5.
V-type amylose–lipid complexes present in partially parboiled rice can decrease starch digestibility. Formation of such complexes can be accomplished using high-temperature fluidized bed drying; the degree of the complexes depends on the thermal condition. The effects of drying media (hot air and humidified hot air), operating conditions (drying air temperature and relative humidity [RH]), and the initial moisture content on the degree of V-type crystallinity and subsequent starch digestibility (or glycemic index, GI) and brown rice texture were examined experimentally. The results showed that paddy drying with humidified hot air (HHA) requires a longer time than hot air (HA). Higher drying air temperature, RH, and initial moisture content of paddy yield higher degrees of starch gelatinization and V-type amylose–lipid complexes. The brown rice dried by HA or HHA had lower starch digestibility and a harder texture than the reference sample. Within the range of parameters studied, to obtain the lowest GI for the dried brown rice, paddy at an initial moisture content of 33% (db) should be dried by HHA at 150°C and 6.4% RH.  相似文献   

6.
《Drying Technology》2013,31(7):1731-1754
Abstract

As reported by many researchers, it was found that fluidized bed paddy drying using high drying air temperatures of over 100°C affected the head rice yield and whiteness of dried rice. However, only a few studies on fluidized bed paddy drying with drying air temperatures below 100°C were so far reported. The main objective of this work was therefore to study the effect of fluidized bed drying air temperature on various quality parameters of Suphanburi 1 and Pathumthani 1 Indica rice. Paddy was dried from the initial moisture contents of 25.0, 28.8, and 32.5% dry basis to 22.5 ± 1.2% dry basis using inlet drying air temperatures between 40 and 150°C at 10°C/step. After fluidized bed drying, paddy was tempered and followed by ambient air aeration until its final moisture content was reduced to 16.3 ± 0.5% dry basis. The results showed that the head rice yield of Suphanburi 1 was significantly related to the inlet drying temperature and initial moisture content whilst there was no significant relationship between the head rice yield, drying temperature and initial moisture content for Pathumthani 1. The whiteness of the two rice varieties was slightly decreased with increase in drying air temperature and initial moisture content. It was also found that the hardness of both cooked rice varieties exhibited insignificant difference (p < 0.05) comparing to rewetted rice, which was gently dried by ambient air aeration in thin layer. The thermal analysis by DSC also showed that partial gelatinization occurred during drying at higher temperatures. Using inlet drying air temperatures in the range of 40–150°C therefore did not affected the quality of cooked rice and paddy. The milling quality of paddy was also well maintained.  相似文献   

7.
Rehydration properties and microstructure of vacuum-microwave and hot air–dried potato cubes were examined. Two kinds of models were considered to describe the hydration kinetics: a diffusion model for a cube and two empirical equations, Peleg and Weibull. The values of the effective moisture diffusivity of soaked potatoes were in the range 1.17 × 10?9 to 4.73 × 10?9 m2/s. The vacuum-microwave drying technique resulted in puffed potato particles characterized by porous microstructure with a network of open cavities and the hot air drying gave the potato particles containing compacted cells with the low amount of open micro-caves. Higher rehydration ability was observed for the samples dried with microwaves under low pressure. Vacuum-microwave drying at 6 kPa seems to be the optimal drying condition for potato cubes, ensuring porous microstructure of dried material and low shrinkage of dried potato particles as well as their high recovery properties and rehydration.  相似文献   

8.
Most commercial parboiled rice is produced from high-amylose content rice. Glutinous rice, which is lacking in amylose content, is generally consumed in Southeast Asian countries. Rare study of parboiling glutinous rice has been observed. In this study, glutinous rice was improved in head rice yield by a novel parboiling process. Two rough glutinous rice, rice department 6 (RD6) and black glutinous rice (BGR) cultivars, were soaked in hot water at 70?±?5°C for 3?h. The ricer 3moisture content after soaking was 50–52% (d.b.), it was dried with hot air and superheated steam (SHS) at 110, 130, and 150°C in a fluidized bed dryer. The results show that SHS at all drying temperatures can improve the high head rice yield in both parboiled glutinous rice cultivars better than hot air drying. Higher temperature drying caused L* value to decrease but the b* value increases in RD6, whereas in BGR, all color values decreased and ΔE* was increased when the drying temperature increased. Increasing drying temperature presented a softer texture of both glutinous rice cultivars. Upper 130°C, completed gelatinization of both varieties can be obtained and seen by scanning electron microscope and differential scanning calorimeter (DSC). This technique of using high-temperature fluidized bed drying can produce completely parboiled glutinous rice in a single process instead of two conventional processes, steaming and drying, in series.  相似文献   

9.
The present study investigated the changes in color, volatile compounds, total phenolic content, total flavonoid content, and antioxidant activity of two holy basil leaves (kaprow in Thai) Ocimum sanctum L. cultivars, kaprow khao and kaprow daeng, after three drying treatments, namely hot air (HA), low relative humidity air drying (LRH), and far-infrared radiation (FIR). Overall, HA dried showed a greater decrease in L values than did LRH and FIR dried for both kaprow cultivars. A significant decrease in total phenolic content (TPC), total flavonoid content (TFC), and ferric reducing antioxidant power (FRAP) was found in hot-air (HA) dried compared to fresh leaves, while TPC, TFC, and FRAP in LRH and FIR dried kaprow were significantly increased. Kaprow daeng and kaprow khao attributes represented by such compounds as β-caryophyllene, methyl eugenol, and eugenol were found to increase during drying. We found that eugenol was a major volatile compound ranging from 18% in HA dried to 23% in FIR dried samples in kaprow khao, whereas methyl eugenol was the main volatile compound in kaprow daeng ranging from 35% in fresh to 49% in FIR dried samples. Our results have demonstrated that LRH and FIR should be considered as a suitable drying method for kaprow with respect to preserving its color, antioxidant property, phenolic compounds, and volatile compounds. The present study has provided useful information for industrial use of kaprow powder production.  相似文献   

10.
Burdock cube samples were dried using hot air and microwave pulsed spouted bed drying (MPSBD). Hot air drying was carried out at three temperatures (70, 80, and 90°C). MPSBD was carried out at three microwave power levels (1.0, 2.0, and 3.0 W/g). The results showed that MPSBD samples dried at 2.0 W/g for 30 min and at 1.0 W/g for 40 min had desirable color, flavor, and textural attributes. Gas chromatography–mass spectrometry results showed that the samples dried using MPSBD were richer in flavor compounds, especially in esters, compared to the hot air–dried samples.  相似文献   

11.
This article presents experimental results and analysis of four drying methods, viz. hot air drying (AD), hot air-assisted radio frequency drying (ARFD), infrared drying (IRD), and microwave-assisted hot air drying (MAD), on color, microstructure, density, rehydration capacity, and texture after rehydration of stem lettuce slices (Lactuca sativa L.). The drying time required for these drying protocols was also compared. These four drying tests were conducted at fixed air temperature (60°C) and velocity (1 m/s), as well as identical sample load (300 g), bed depth (20 mm), and the power level for ARFD, IRD, and MAD, which was fixed at 4 W/g. The results showed that the drying time required for stem lettuce slices using ARFD was the shortest (120 min), followed by MAD (140 min) and IRD (180 min); AD required the longest time (360 min). Notably, ARFD yielded uniform drying and the quality of the dried samples using ARFD was also the best among these four drying methods.  相似文献   

12.
ABSTRACT

The effects of conduction heating in a steam jacketed cylindrical dryer-cum stabilizer at the drying surface temperatures ranging from 100° to 120°C on thin layer conduction drying characteristics of raw and steamed rice bran were studied. Results show that both raw and steamed rice bran at 13.7·14.2 and 14.7 ·16 ·· 3 percent (d b) initial moisture contants (imc; respectively dried uncer fillinq-rate period only, where as steamed bran at 30·3 per cent imc dried initially under constant rate period for a very short time and then dried under fall ing-rate period. The drying surface temperature of 115°C can be taken as optimumu for conduction drying of both raw. and steamed rice bran. The empirical drying equations, developed for the above drying conditions. can be used to predict the drying time with fairly good accuracy.  相似文献   

13.
In the present work an attempt has been made to study the dehydration of aonla (Indian gooseberry) fruits. Aonla fruits, being highly perishable, cannot be kept for long periods. Aonla contains a very high amount of vitamin C, which is highly volatile and susceptible to heat. Sun drying required the longest period of drying (660 min), while the shortest time of drying is with fluidized bed drying at 80°C with 115 m/min air velocity (120 min). The results indicate that there is great loss of most of the ascorbic acid in the aonla slices. This suggests that the drying exposure caused the loss of volatile biochemical compounds. The retention of ascorbic acid in the samples dried in fluidized bed drying is greater compared to those dried under sun and hot air tray.  相似文献   

14.
The effects of pretreatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of red kidney bean seeds were investigated. Drying experiments were carried out at four different drying air temperatures of 50°C, 60°C, 70°C, and 80°C. It was observed that drying and rehydration characteristics of bean seeds were greatly influenced by air temperatures and pretreatments. Four commonly used mathematical models were evaluated to predict the drying kinetics of bean seeds. The Weibull model described the drying behaviour of bean seeds at all temperatures better than the other models. The effective moisture diffusivities (Deff) of bean seeds were determined using Fick's law of diffusion. The values of Deff were between 1.25 × 10?9 and 3.58 × 10?9 m2/s. Activation energy was estimated by an Arrhenius-type equation and was determined as 24.62, 21.06, and 20.36 kJ/mol for citric acid, blanch, and control samples, respectively.  相似文献   

15.
In this work, we examined and compared two combined alternatives for the drying of blueberries (O’Neal). Pretreatments of osmotic dehydration (60°Brix sucrose solution at 40°C for 6 h) and hot air drying (HAD) (60°C, 2.5 m/s for 90 min) were performed to reach the same water content. Pretreated blueberries were then dried by microwave at different microwave output power values: 562.5, 622.5, and 750 W. The combined drying processes were also compared with HAD alone (control). The effects of the processes over blueberries were studied in terms of decrease in water content, drying rate (DR), mechanical properties (firmness and stiffness), optical properties (L*, a*, and hue angle (h)), antioxidant capacity, and rehydration capacity. The hot air–microwave drying decreased the process time and presented a high drying rate compared with the osmotic dehydration–microwave processes and the control drying. In terms of quality, the antioxidant and rehydration capacities were the most affected. The results showed that the best drying method to obtain the desired final product was the hot air–microwave drying (750 W).  相似文献   

16.
The thin-layer drying of three varieties of green peas was carried out in hot air-drying chamber using an automatic weighing system at five temperatures (55–75°C) and air velocity of 100 m/min. The green peas were blanched and sulphited before drying. The variety Pb-87 dried at 60°C was judged to be best for quality on the basis of sensory evaluation and rehydration ratio. The Thomson model was found to represent thin-layer drying kinetics within 99.9% accuracy. The effective diffusivity was determined to be 3.95 × 10?10 to 6.23 × 10?10 m2/s in the temperature range of 55 to 75°C. The activation energy for diffusion was calculated to be 22.48 kJ/mol. The variation in shrinkage exhibited a linear relationship with moisture content of the product during drying. The Dincer number at drying air temperature 60°C and drying air velocity 100 m/min was determined to be 2,838,087. The difference between temperatures of drying air and that of green pea kernels was found to decrease with drying time for all the drying temperatures taken for investigation.  相似文献   

17.
In order to investigate the feasibility and the enhancing effect of contact ultrasound application during far-infrared radiation (FIR) drying, a contact ultrasound strengthened FIR (CUFIR) drying equipment was fabricated and used, and CUFIR drying experiments on pear slices were carried out to explore the synergetic effects of ultrasound power and FIR heating on drying characteristics, microstructure, and quality of dried pear products. The results show that the application of contact ultrasound could be obviously helpful to accelerate internal mass transfer in pear slices and improve the drying rate of FIR drying, and higher ultrasound power could lead to stronger strengthening effect. The enforcing effect of ultrasound increased at higher FIR power, and weakened with the reduction of moisture content during CUFIR drying. The Deff values ranged from 4.76?×?10?10?m2/s to 13.94?×?10?10?m2/s in this study and the increase of both FIR power and ultrasound power had significant and positive influence on the increasing of Deff values. With scanning electrical microscope (SEM), it was observed that the improvement of ultrasound power could enlarge the size of microcapillaries and even generate new micropores and microchannels on the ultrasound-treated surface and in the organism structure of pear slices. The increase of ultrasound power could improve total phenolic content (TPC) and total flavonoids content (TFC) of pear slices at FIR powers of 100 and 220?W. Yet, the application of contact ultrasound with ultrasound power of 60?W had negative influence on TPC and TFC at FIR power of 340?W. Although the ascorbic acid content (AAC) reduced as FIR powers increased during FIR drying without contact ultrasound assistance, the increase of ultrasound power could improve AAC at all FIR powers. The CUFIR drying at ultrasound power of 60?W and FIR power of 220?W achieved the lowest energy consumption. Therefore, the application of FIR drying combined with contact ultrasound is a promising method to improve drying rate as well as protect product quality.  相似文献   

18.

The aim of this work was to optimize the drying process of vegetal pear and minimize energy resources (cost) under prefixed limits involving vegetal pear moisture, color, and productivity. The optimization of vegetal pear drying was made by using response surface methodology (RSM) for minimum process cost and color difference between fresh and dried samples (moisture ≤0.10 g water g d.m.?1). A pilot-plant dryer was used for dehydrating vegetal pear slices (0.5 cm thickness). The tests were carried out at different air temperature (60 to 70°C), samples diameter (4 to 7 cm), and pretreatment with ascorbic acid solutions (0–0.1% w/w). The optimum drying conditions were found at air temperature of 63°C with 5-cm sample diameter and 0.075% of ascorbic acid concentration. On the optimized drying conditions, dried vegetal pear presented values with moisture content of 0.052 g water g d.m.?1, color difference of 11.65, production rate of 0.0073 kg h?1, and total cost of $30.58/kg dried product?1  相似文献   

19.
Ilknur Alibas 《Drying Technology》2013,31(11):1266-1273
Collard leaves (Brassica oleracea L. var. acephala) with an initial moisture content of 6.65 on percentage dry basis (%db) were dried by three different drying methods: microwave, air, and vacuum. Samples of fresh leaves, 25 g each, were dried until their moisture was down to 0.1 on a dry basis. The following drying levels were used in each of the drying processes: 350, 500, 650, 750, 850, and 1000 W for microwave drying; 50, 75, 100, 125, 150, and 175°C for air drying; and 0.4, 50, and 100 mmHg at 50 and 75°C for vacuum drying, respectively. Drying times ranged between 2.5 to 7.5 min, 8 to 210 min, and 35 to 195 min for microwave, air, and vacuum drying, respectively. The data obtained compared well with a thin-layer drying model. Microwave drying at 750 W provided optimal results with respect to drying time, color, and ascorbic acid content (vitamin C).  相似文献   

20.
Jet tube fluidized bed drying was investigated as a means of rapidly generating shelf-stable and high-quality sweetened and nonsweetened blueberries. Sugar-infused and noninfused scarified Rabbiteye blueberries (Vaccinium ashei ‘Brightwell’) were dried at 99, 107, and 116°C. Prior scarification of the blueberry surface aided in decreasing the drying time. Increased lightness (L*) values were most notable at higher drying temperatures for sugar-infused blueberries, suggesting loss of pigments. Total monomeric anthocyanins level, initially 7.65 mg cyanidin-3-O-glucoside equivalents (C3G eq)/g extract, decreased as drying temperature increased and ranged between 4.07 down to 1.51 mg C3G eq/g extract for dried blueberries. The total phenolics content increased with drying for noninfused blueberries, with highest levels of 31.6 mg gallic acid equivalents (GAE)/g extract for samples dried at 107°C. With the exception of sugar-infused berries dried at 107 and 116°C, the dried blueberries maintained or demonstrated slightly increased hydrophilic oxygen radical absorbance capacity (H-ORACFL) values, indicating that their antioxidant capacity was retained upon drying. Blueberries dried at 107°C possessed the greatest preference scores and best retention of blueberry flavor and required a relatively short drying time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号