首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

In recent years, intermittent microwave coupled with hot air-drying has been used increasingly, thanks to considerable improvements observed in drying properties. The aim of this study was to investigate the effect of process of drying apple pretreated osmotically with sucrose solution at five concentrations of 0 (control), 10, 30, 50, and 70% (w/w), using intermittent microwave at four power levels of 0 (control), 360, 600, and 900?W, four pulse ratios of 1, 2, 3, and 4, and convective hot air (40°C) on drying kinetics, effective moisture diffusion coefficient, shrinkage, bulk density, rehydration ratio, and energy consumption. Results showed that the three-stage hybrid osmotic–intermittent microwave–convective drying of apple at low temperature yielded higher drying rates (with 41.5% decrease in drying time) and improved quality of final product. The effective moisture diffusion coefficient increased with an increase in power, pulse ratio, and the concentration of osmotic solution. Furthermore, shrinkage, bulk density, and energy consumption of the samples decreased with an increase in power, pulse ratio, and the concentration of osmotic solution. In summary, the use of intermittent microwave coupled with forced convection of hot air (at low temperature) in drying of apple pretreated by sucrose osmotic solution led to products with improved properties in terms of both quality and quantity.  相似文献   

2.
This study aims to investigate the effect of ultrasonic pretreatment on drying time and quality properties of tomato slices dried by microwave combined with hot air at 60°C. The influence of ultrasound pretreatment (0, 20, and 40?min) and microwave power (120, 150, and 180?W) on drying time, color, total phenolic content, lycopene, vitamin C, and rehydration capacity of dried slices of tomato was studied. Results showed that as the microwave power level increased, drying time decreased significantly (about 46.4%). Ultrasound pretreatment decreased the drying time by 7.38% only at 120?W microwave power and 40?min of pretreatment compared to those without ultrasound pretreatment at the same microwave power. Depending on drying conditions, vitamin C and lycopene contents reduced from 433.94 to 81.89?mg AA/100?g dry solids and 3920.57 to 415.40?mg/100?g dry solids, respectively. The change in total phenolic content was not severe as much as vitamin C contents. Rehydration capacity of pretreated samples was larger than nontreated samples. The color values of dried tomato slices were in the acceptable range. Both microwave power and ultrasound pretreatment affected the quality of the final product significantly.  相似文献   

3.
During combined microwave–hot-air drying, the surface and the core temperatures of the sample have great influence on the process. To investigate the influence systematically, drying system with feedback control strategy of the two temperatures was proposed. Then various pairs of the two temperatures were applied in the drying mode 1. However, it was found difficulty to achieve both short drying time and high product quality with fixed temperature pair, because the interaction between microwave and the sample changes as the moisture content decreases in the drying process. Different temperature pairs were applied during the three drying stages in drying mode 2, so that better product can be obtained in shorter drying time. To further improve the product quality, the drying rate was controlled by a feedback loop within a desired range in drying mode 3. The change of drying rate was realized by adjusting the two temperatures continuously. To omit the weighing scale, a feedforward control strategy for the drying rate was put forward in drying mode 4, where the temperatures were controlled along with preset lines. The results showed that the product quality and the drying time were similar to those in drying mode 3.  相似文献   

4.
Mature ginger was pretreated by soaking in citric acid prior to drying in a single layer in a tray and heat pump dehumidified dryer at three temperatures of 40, 50, and 60°C and in a mixed-mode solar dryer at 62.82°C and a radiation intensity of 678 W/m2. The drying data were applied to the modified Page model. Diffusivities were also determined using the drying data. Quality evaluation by color values, reabsorption, and 6-gingerol content showed best quality for ginger with no predrying treatment and dried at 40°C in a heat pump–dehumidified dryer. At drying temperature of 60 to 62.82°C, no pretreated dried ginger from mixed-mode solar dryer provided the shortest drying time and retained 6-gingerol as high as heat pump–dehumidified dryer.  相似文献   

5.
6.
《Drying Technology》2012,30(15):1676-1687
In the present study, heat pump–assisted drying of salak fruit was optimized by dividing the dehydration process into three distinct phases, namely, the initial, intermittent, and final stages. Drying variables considered for the optimization were the intermittent duration (X 1), intermittent ratio (X 2), and intermittent cycle (X 3); the response variables studied were the total drying time (Y 1), total heating time during intermittent drying (Y 2), total heating time after intermittent drying (Y 3), total color change (Y 4), ascorbic acid content (Y 5), and total phenolic content (Y 6). Response surface methodology was used to determine the best combination of the drying variables that could provide the shortest drying period and premium product quality. Experimental results showed that all of the response variables were improved under the optimized intermittent drying conditions compared to the conventional method using constant drying conditions. The optimized heat pump–assisted intermittent drying reduced the drying time by 36% and improved phytochemicals retention with ascorbic acid and total phenolic content recorded at 18.4 ± 1.8 mg ascorbic acid/100 g dw and 43.3 ± 2.2 mg gallic acid equivalent (GAE)/g dw, respectively. The color change of the final product was minimum with a ΔE* value of 7.26 ± 2.03.  相似文献   

7.
Drying process of industrial green in-process products especially those susceptible to cracking, need great care, and optimally arrangement of parameters of convective drying. Intermittent drying is a new technique in drying area and is a promising solution for product quality enhancement. The intermittent drying with variable air temperature and the intermittent drying with variable air humidity are the most used techniques. The current study is devoted to 3D modeling and simulation of intermittent drying with variations of both air humidity and temperature and it is then compared with each of the cases of the intermittent drying with variable air temperature and the intermittent drying with variable air humidity. It was observed that the best dried product quality was obtained in intermittent drying with periodic changes of air temperature. Vapor condensation in the intermittent drying with variable air humidity is an undesirable phenomenon that significantly reduces the effectiveness of this process.  相似文献   

8.
S. Deepika 《Drying Technology》2018,36(14):1719-1737
The different pretreatments were given to lemon slices to inactivate pectinesterase and peroxidase enzymes and to dry the product rapidly using infrared–microwave hot air combination. Osmotic pretreatment followed by 1-min steam blanching was found to reduce moisture in the product, increase solid content, and inactivate enzymes in lemon slices while maintaining negligible dry matter and juice sac loss. The infrared hot air was found effective in partial drying of pretreated lemon slices up to 1 hour without entering in drastic falling-rate period. Therefore, after 1?h microwave hot air was used to complete the drying process. The optimum infrared drying condition was found at 3000?W/m2 radiation intensity, 90°C air temperature, 100?mm distance between lamp and product, and 1.5?m?s?1 air velocity. In microwave finish drying, the power density of 0.30?W?g?1, 89.9°C air temperature, and 0.5?m?s?1 air velocity were found to result in the best product. The hybridization of osmotic–steam blanching and the two drying methods overcame the problems of browning, extended falling-rate periods, improper power distribution, and quality deterioration. Also, the higher values of moisture diffusivities were observed during hybrid drying.  相似文献   

9.
The effect of particle size on the vacuum–fluidized bed drying process was experimentally studied using pepper seed particles with two distinct diameters. In the constant drying rate period, the small particles demonstrated stronger drying rates resulting from higher mass transfer coefficient values and larger contact area for per unit particle humidity.

The experimental results also showed that the falling drying rate period was controlled in the beginning by the particle diameter and later by the effective porosity of the particle. Consequently, in the beginning of the falling drying rate period the small particles presented higher drying rates, whereas toward the end of the period, the large particles, with higher effective porosity, produced stronger drying rates than the small ones.

The effects of the vacuum pressure and the superficial gas velocity throughout the process were only observed in the constant drying rate period, whereas the higher operating temperatures enriched the drying rates in both periods.  相似文献   

10.
Worldwide, eucalyptus tree plantations have been established in appropriate climates because of fast growth and wood qualities suitable mainly for pulp. A potential exists of converting eucalyptus trees into lumber that may be of higher value than pulp. Conventional drying of lumber of Eucalyptus globulus is often difficult because of the occurrence of drying stresses, leading to collapse and checking. The special method of vacuum drying while heating the wood with high-frequency energy (75–77 mbar, 46–51°C) was used to obtain short drying times (5–13 days from green state to 10% final moisture content) and low crack amount.  相似文献   

11.
12.
The drying operation is one of the critical steps in the preparation of instant rice. Drying methods and conditions play important roles in achieving the desired quality. In this study, instant rice was subjected to convective hot air, microwave and combined microwave-hot air dehydration. Three air temperature (70 °C, 80 °C, 90 °C) and three microwave power (210 W, 300 W, 560 W) settings were investigated to find the drying kinetics, rehydration kinetics and colour change. The results showed that combined microwave-hot air drying decreased the drying time required when compared to drying with either hot air or microwave energy alone. Predictive models were developed to describe dehydration and rehydration kinetics. Dehydration rate, rehydration rate and total colour change of rehydrated product generally increased with microwave level and air temperature. Combination drying with MW = 300 W and T = 80 °C was optimal in terms of drying time, rehydration time and colour.  相似文献   

13.
14.
Intermittent drying is a process in which the drying and tempering stages are performed sequentially. This process has been carried out using different strategies. In this research, the goal was focused on the calculation of the time required for each stage and the appropriate conditions. In order to accomplish such an objective, a model was established to study the governing phenomenon by considering all parameters affecting the performance of the drying process. This model comprises two submodels, namely, macroscopic and microscopic. These two submodels are coupled to each other for use in the optimization problem that defines the total drying time as the cost function and the drying–tempering conditions as the constraints. Different aspects of the optimization results, for example, the effect of the number of intervals and fulfilling of the constraints, are presented.  相似文献   

15.
Vacuum microwave dehydration characteristics and drying kinetics of potato slices were evaluated using a laboratory-scale dryer. The test materials were placed on a rotating tray to allow uniform exposure to the microwave field. The effect of drying conditions on the drying characteristics was investigated. As expected, higher drying rates were obtained with higher microwave power and lower vacuum levels. The effect of vacuum pressure on drying rate was not as significant as that of microwave power. The Henderson & Pabis model provided better simulation of the drying curves for potato slices. Empirical models are presented for the drying rate constant as a function of the microwave power and vacuum pressure for potato slices under the range of operating conditions tested.  相似文献   

16.
17.
Drying shrinkage is an important problem in the food industry. Focusing on microwave–vacuum drying, we study the mechanism of deformation due to shrinkage of the food structure. A relationship between the strain and the water content is introduced for a finite element analysis. The temperature and water distributions are obtained by a finite difference method with the use of a variable permeability and diffusion coefficient depending on the water content. Comparisons with experimental data on radishes, carrots, and tofu indicate that the present model can express the deformation as well as the water content inside the materials.  相似文献   

18.
19.
Crystallization and sintering of glass–phlogopite composites were studied using microwave and conventional heating. It was found that by increasing phlogopite content the hydroxyl group in phlogopite structure absorbs microwave irradiation and reduces the optimum sintering temperature.Diopside was the resulting phase after conventional and microwave heating. XRD results showed that the decomposition of phlogopite occurred 100 °C lower when using microwave irradiation instead of conventional heating. The easy machining of the components sintered in microwave was related to the presence of phlogopite phase. The morphology of diopside sintered by microwave was almost fiber like (100 nm in diameter), whereas in conventional method these crystals were plate like (5 μm in diameter).  相似文献   

20.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号