首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The aim of this study was to investigate the effects of meat fiber directions and air conditions on moisture and temperature developments, shrinkage, and effective diffusivity constants compared to homogenous minced meat samples. The lean meat with three fiber directions and minced meat samples were dried at temperatures of 48 and 70°C and air flow rates of 0.5, 1.0, and 1.7 m/s. The minced meat samples showed 1.0 ± 0.19 to 4.4 ± 0.03°C higher temperature values and 2.3 ± 0.004 to 6.2 ± 0.003% lower moisture losses than the lean meat samples in all fiber directions. The lowest temperatures were observed in lean meat with h 1 (normal flow, normal drying) fiber direction. The highest moisture loss and diffusion coefficient were observed in lean meat with h 2 (parallel flow, normal drying) and v (normal flow, parallel drying) fiber directions, which also possessed the shortest drying times (10.4 and 13.4 h, respectively). The estimated diffusion coefficient values ranged between 1.11 × 10?9 and 5.54 × 10?9. The results indicated that lean and minced meat samples differed in their drying behaviors in a tray dryer under the tested conditions with >90% reproducibility (or ≤10% coefficient of variation).  相似文献   

17.
18.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号