首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对于D^*算法,由于其本身存在一定的缺陷,例如,规划阶段的庞大计算量,所得路径转角相对较大、具有多次转弯数,且若目标点更换后,原有规划不宜再用,应再次作出规划等。因此,对此算法进行改进。基于沃罗诺伊路线图法,将目标环境分解为多个局部环境,选取局部路径目标点时,以局部环境关键节点为主,对于无用节点,采取舍弃操作。使D^*算法的改进基于两点,即子节点选定方式、启发函数的改进,同时最大程度确保路径平滑。仿真结果表明,在转角度数、转弯次数上均有优化,规划时间缩短,路径质量提高,适当保持与障碍物的距离,机器人执行任务的安全性得到保障。在目标点变更后,利用沃罗诺伊路径路线图,机器人以更小的计算量抵达新的目标点。  相似文献   

2.
An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which erases the local minima is proposed by using a function which covers the minima with a plane surface. The effectiveness of the proposed method is verified by numerical simulations.  相似文献   

3.
Aimy — an Autonomous Mobile Robot (AMR), capable of moving in an unknown environment filled with obstacles, has been developed. To avoid collision with unexpected obstacles, an Infrared Detector System (IDS) for providing multiple reading data was designed and implemented. A navigation/obstacle avoidance strategy for a mobile robot, which is based on the use of infrared detector data only, is discussed. Experiment results are also presented which exhibit the power of the developed algorithm and Infrared Detector System.  相似文献   

4.
基于行为的轮式移动机器人导航控制   总被引:2,自引:0,他引:2  
介绍了一种轮式移动机器人CASIA-I及其运动机构,针对该运动机构给出了机器人的运动方程和基于行为的导航控制算法,并根据该算法进行了软件仿真和实物实验.实验结果表明,该导航控制算法是一种有效的导航算法.  相似文献   

5.
Obstacle avoidance is a significant skill not only for mobile robots but also for robot manipulators working in unstructured environments. Various algorithms have been proposed to solve off-line planning and on-line adaption problems. However, it is still not able to ensure safety and flexibility in complex scenarios. In this paper, a novel obstacle avoidance algorithm is proposed to improve the robustness and flexibility. The method contains three components: A closed-loop control system is used to filter the preplanned trajectory and ensure the smoothness and stability of the robot motion; the dynamic repulsion field is adopted to fulfill the robot with primitive obstacle avoidance capability; to mimic human’s complex obstacle avoidance behavior and instant decision-making mechanism, a parametrized decision-making force is introduced to optimize all the feasible motions. The algorithms were implemented in planar and spatial robot manipulators. The comparative results show the robot can not only track the task trajectory smoothly but also avoid obstacles in different configurations.  相似文献   

6.
Autonomous navigation of a robot is a promising research domain due to its extensive applications. The navigation consists of four essential requirements known as perception, localization, cognition and path planning, and motion control in which path planning is the most important and interesting part. The proposed path planning techniques are classified into two main categories: classical methods and heuristic methods. The classical methods consist of cell decomposition, potential field method, subgoal network and road map. The approaches are simple; however, they commonly consume expensive computation and may possibly fail when the robot confronts with uncertainty. This survey concentrates on heuristic-based algorithms in robot path planning which are comprised of neural network, fuzzy logic, nature-inspired algorithms and hybrid algorithms. In addition, potential field method is also considered due to the good results. The strengths and drawbacks of each algorithm are discussed and future outline is provided.  相似文献   

7.
This paper presents a new approach to obstacle avoidance for mobile robots in cluttered and unknown or partially unknown environments. The method combines a new directional method, called beam method (BM), to improve the performance of a local obstacle avoidance approach called curvature velocity method (CVM). BM calculates the best one-step heading which is used by CVM to obtain the optimal linear and angular velocities. The resulting combined technique is called beam curvature method (BCM).

Different experiments in populated and dynamic environments have proved to be very successful. The method is able to guide the robot safely and efficiently during long time periods. We present some of these results compared with other methods.  相似文献   


8.
针对移动机器人局部动态避障路径规划问题开展优化研究。基于动态障碍物当前历史位置轨迹,提出动态障碍物运动趋势预测算法。在移动机器人的动态避障路径规划过程中,考虑障碍物当前的位置,评估动态障碍物的移动轨迹;提出改进的D*Lite路径规划算法,大幅提升机器人动态避障算法的效率与安全性。搭建仿真验证环境,给出典型的单动态障碍物、多动态障碍物场景,对比验证了避障路径规划算法的有效性。  相似文献   

9.
This work proposes application of a state-dependent Riccati equation (SDRE) controller for wheeled mobile cooperative manipulators. Implementation of the SDRE on a wheeled mobile manipulator (WMM) considering holonomic and non-holonomic constraints is difficult and leads to instability of the system. The present study introduces a method of controlling the WMMs including: a general formulation, state-dependent coefficient parameterization, and control structure of the SDRE. Overcoming the problem of instability of the WMM resulted in control design for a system of cooperative manipulators mounted on a wheeled mobile platform. Optimal load distribution (OLD) was employed to distribute the load between the cooperative arms. The presence of obstacles and the probability of a collision between multiple robots in a workspace are the motivations behind employment of the artificial potential field (APF) approach. Two cooperative manipulators mounted on a mobile platform retrieved from Scout robot were modeled and simulated for situations such as controlling multiple mobile bases (collision avoidance), a cooperative system of manipulators, and moving obstacle avoidance. The OLD improved the load capacity, precision, and stability in motion of the cooperative system. Compatibility of the APF within the structure of the SDRE controller is another promising aspect of this research.  相似文献   

10.
Reinforcement based mobile robot navigation in dynamic environment   总被引:1,自引:0,他引:1  
In this paper, a new approach is developed for solving the problem of mobile robot path planning in an unknown dynamic environment based on Q-learning. Q-learning algorithms have been used widely for solving real world problems, especially in robotics since it has been proved to give reliable and efficient solutions due to its simple and well developed theory. However, most of the researchers who tried to use Q-learning for solving the mobile robot navigation problem dealt with static environments; they avoided using it for dynamic environments because it is a more complex problem that has infinite number of states. This great number of states makes the training for the intelligent agent very difficult. In this paper, the Q-learning algorithm was applied for solving the mobile robot navigation in dynamic environment problem by limiting the number of states based on a new definition for the states space. This has the effect of reducing the size of the Q-table and hence, increasing the speed of the navigation algorithm. The conducted experimental simulation scenarios indicate the strength of the new proposed approach for mobile robot navigation in dynamic environment. The results show that the new approach has a high Hit rate and that the robot succeeded to reach its target in a collision free path in most cases which is the most desirable feature in any navigation algorithm.  相似文献   

11.
运用Voronoi图理论及人工势场理论,研究了一种基于近似Voronoi图的移动机器人实时路径规划的方法,用来实现未知室内环境中移动机器人的自主导航。该方法朝向预先定义的目标点位置来探测室内环境,生成近似Voronoi图,同时利用人工势场法进行避障,生成一条能达到目标点的安全、光滑路径。仿真结果表明,该方法简单且易于实现,同时能够减少规划时间。  相似文献   

12.
Potential field method to navigate several mobile robots   总被引:2,自引:1,他引:2  
Navigation of mobile robots remains one of the most challenging functions to carry out. Potential Field Method (PFM) is rapidly gaining popularity in navigation and obstacle avoidance applications for mobile robots because of its elegance. Here a modified potential field method for robots navigation has been described. The developed potential field function takes care of both obstacles and targets. The final aim of the robots is to reach some pre-defined targets. The new potential function can configure a free space, which is free from any local minima irrespective of number of repulsive nodes (obstacles) in the configured space. There is a unique global minimum for an attractive node (target) whose region of attraction extends over the whole free space. Simulation results show that the proposed potential field method is suitable for navigation of several mobile robots in complex and unknown environments. Saroj Kumar Pradhan is faculty of Mechanical Engineering Department with N.I.T., Hamirpur, HP, India. He has received his B.E. degree in Mechanical Engineering from Utkal University and M.E. in Machine Design and Analysis from NIT Rourkela. He has published more than 17 technical papers in international journals and conference proceedings. His areas of research include mobile robots navigation and vibration of multilayred beams. Dayal R. Parhi is working as Assistant Professor at NIT Rourkela, India. He has obtained his first Ph.D. degree in “Mobile Robotics” from United Kingdom and Second Ph.D. in “Mechanical Vibration” from India. He has visited CMU, USA as a “Visiting Scientist” in the field of “Mobile Robotics”. His main areas of current research are “Robotics” and “Mechanical Vibration”. He is supervising five Ph.D. students in the fields of Robotics and Vibration. Email: dayalparhi@yahoo.com. Anup Kumar Panda Received his M.Tech degree from IIT, Kharagpur in 1993 and Ph.D. degree from Utkal University in 2001. He is currently an assistant professor in the Department of Electrical Engineering at National Institute of Technology, Rourkela, India. His areas of research include robotics, Machine Drives, harmonics and power quality. He has published more than 30 technical papers in journals and conference proceedings. He is now involved in two R&D projects funded by Government of India. R. K. Behera is a Senior Lecturer of Mechanical Engineering at National Institute of Technology, Rourkela, India. He has been working as lecturer for more than 10 years. He obtained his BE degree from IGIT, Sarang, of Utkal University. He obtained his ME and Ph.D degrees, both in the field of mechanical engineering from NIT Rourkela.  相似文献   

13.
徐小强  王明勇  冒燕 《计算机应用》2005,40(12):3508-3512
针对传统人工势场法在路径规划过程中容易陷入陷阱区域和局部极小点的问题,提出了一种改进人工势场法。首先,提出安全距离概念,避免了不必要的路径,从而解决了路径过长和算法运行时间过长问题;然后,为避免机器人陷入局部极小点和陷阱区域,在算法中引入预测距离,使得算法可以在机器人陷入局部极小点或陷阱区域之前做出反应;最后,通过合理设置虚拟目标点,引导机器人避开局部极小点和陷阱区域。实验结果表明,改进算法可以有效解决传统算法容易陷入局部极小点和陷阱区域的问题;同时,相较于传统人工势场法,所提算法规划出的路径长度减少了5.2%,计算速度提高了405.56%。  相似文献   

14.
徐小强  王明勇  冒燕 《计算机应用》2020,40(12):3508-3512
针对传统人工势场法在路径规划过程中容易陷入陷阱区域和局部极小点的问题,提出了一种改进人工势场法。首先,提出安全距离概念,避免了不必要的路径,从而解决了路径过长和算法运行时间过长问题;然后,为避免机器人陷入局部极小点和陷阱区域,在算法中引入预测距离,使得算法可以在机器人陷入局部极小点或陷阱区域之前做出反应;最后,通过合理设置虚拟目标点,引导机器人避开局部极小点和陷阱区域。实验结果表明,改进算法可以有效解决传统算法容易陷入局部极小点和陷阱区域的问题;同时,相较于传统人工势场法,所提算法规划出的路径长度减少了5.2%,计算速度提高了405.56%。  相似文献   

15.
在未知环境下,机器人很难快速获取周边环境信息并建立实时环境地图,实现自主运行.为此提出基于视觉导航的方法,利用全景摄像机作为机器人的视觉传感器系统采集环境信息,将彩色地图进行HSI空间下模糊聚类图像分割,得到环境二值图像;将图像进行栅格化处理来构建环境地图,运用8方向连接的Dijkstra进行全局路径规划,计算出最优路径,从而实现移动机器人的快速、自主运动.经过仿真实验证明,该方法有效且可行.  相似文献   

16.
本文针对自由漂浮的双臂空间机器人系统研究了一种基于危险域的避自碰轨迹规划方案。首先,引入危险域的概念,用来评估两个机械臂之间发生碰撞的危险程度。其次,在路径规划的基础之上,利用危险域的反馈信息,设计了一种安全避自碰的轨迹规划方案,用以保证两个机械臂可以运动在安全位型,从而避免发生自碰。最后,针对一个双臂冗余空间机器人系统进行运动仿真,仿真结果验证了本文方法的有效性。  相似文献   

17.
基于改进人工势场法的移动机器人路径规划   总被引:4,自引:0,他引:4  
石为人  黄兴华  周伟 《计算机应用》2010,30(8):2021-2023
针对势场法的障碍物附近目标不可达的问题,改进了传统人工势场斥力函数,确保目标点是机器人的势场全局最小点,使得机器人顺利到达目标点。针对势场法的局部最小值问题,提出了一种连接局部最小值区域障碍物的方法,建立了机器人离散传感器模型,使机器人快速走出局部最小值区域。改进后的人工势场法适用于复杂室内环境下的机器人路径规划。仿真结果证明了该方法的有效性。  相似文献   

18.
基于混合势场法的移动机器人路径规划   总被引:1,自引:1,他引:0  
针对目前移动机器人在路径规划中出现的问题,提出一种自主移动机器人路径规划的新方法——混合势场法。分析了人工势场法的不足,找出局部极小值点的形成原因;针对人工势场法中障碍物附近目标不可达问题,采用了在斥力场函数中加入斥力因子,使得机器人顺利到达目标点;针对陷入局部极小值和振荡的问题,提出了混合势场法,通过将势场法和可视图法结合起来,使得机器人走出局部极小值和振荡区域。最后,将混合势场法应用于室内移动机器人的路径规划中,仿真实验证明了该方法的有效性。  相似文献   

19.
In this paper, a novel method for robot navigation in dynamic environments, referred to as visibility binary tree algorithm, is introduced. To plan the path of the robot, the algorithm relies on the construction of the set of all complete paths between robot and target taking into account inner and outer visible tangents between robot and circular obstacles. The paths are then used to create a visibility binary tree on top of which an algorithm for shortest path is run. The proposed algorithm is implemented on two simulation scenarios, one of them involving global knowledge of the environment, and the other based on local knowledge of the environment. The performance are compared with three different algorithms for path planning.  相似文献   

20.
The roadmap approach to robot path planning is one of the earliest methods. Since then, many different algorithms for building roadmaps have been proposed and widely implemented in mobile robots but their use has always been limited to planning in static, totally known environments. In this paper we combine the use of dynamic analogical representations of the environment with an efficient roadmap extraction method, to guide the robot navigation and to classify the different regions of space in which the robot moves. The paper presents the general reference architecture for the robotic system and then focuses on the algorithms for the construction of the roadmap, the classification of the regions of space and their use in robot navigation. Experimental results indicate the applicability and robustness of this approach in real situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号