首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Pd nanoparticles supported in functionalized mesoporous silica were prepared. Mesoporous silica support was modified with [3-(2-aminoethyl aminopropyl)] trimethoxysilane. Palladium ions were grafted onto the functionalized mesoporous silica and reduced with hydrazine hydrate to obtain the Pd nanoparticles supported on functionalized mesoporous silica. The Pd loading in the nanocomposite of Pd supported on the functionalized mesoporous silica is 4.30 wt%. CO chemisorption analysis on the nanocomposite shows a Pd dispersion as high as 35% and a Pd surface area of 156 m2/g. The surface area, pore size, and pore volume decrease slightly with the incorporation of the Pd nanoparticles into the functionalized mesoporous silica. Pd supported on the functionalized mesoporous silica with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Heck carbon-carbon coupling reaction. The catalyst can be reused for at least six recycles in air with only a minor loss of activity.  相似文献   

2.
Various adsorbents are available for the removal of heavy and toxic metals, silica-based materials have been the most popular. Recently, there has been considerable interest for the modification of organic moieties and mesostructured materials to enable their use as efficient adsorbent for metal removal. In this study, here we are reporting successful incorporation of tetrakis(4-carboxyphenyl)porphyrin (TCPP) in mesoporous silica by the post-synthetic method. TCPP-SBA-15 has been found to be an effective material for the removal of Cu(II) from aqueous solution due to the chelating nature of the porphyrin-bridging group. A comparative study on adsorption of copper(II) ion over NH(2)-SBA-15 silica and TCPP-SBA-15 was performed. The results show that TCPP-SBA-15 material has higher adsorption capacity than NH(2)-SBA-15 silica and it reaches the adsorption maxima around 13 mmol g(-1).  相似文献   

3.
A mesoporous silica (SBA-15) and amorphous silica (SG) have been chemically modified with 2-mercaptopyridine using the homogeneous route. This synthetic route involved the reaction of 2-mercaptopyridine with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT-IR and MAS NMR spectroscopy, thermogravimetry and elemental analysis. The solid was employed as a Cr(VI) adsorbent from aqueous and non-aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration and solvent polarity) has been studied using the batch technique. The results indicate that under the optimum conditions, the maximum adsorption value for Cr(VI) was 1.83 ± 0.03 mmol/g for MP-SBA-15, whereas the adsorption capacity of the MP-SG was 0.86 ± 0.02 mmol/g. On the basis of these results, it can be concluded that it is possible to modify chemically SBA-15 and SG with 2-mercaptopyridine and to use the resulting modified silicas as effective adsorbents for Cr(VI).  相似文献   

4.
Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.  相似文献   

5.
胆红素是由衰老及异常红细胞被吞噬、血红蛋白分解代谢产生的一种生物活性物质。采用具有小孔径和较大孔径两种介孔孔道的双介孔硅作为基底材料,并用葡萄糖醛酸对双介孔硅进行功能化,以实现对胆红素的选择性吸附。研究了吸附时间、温度、初始浓度、血清蛋白、离子强度对胆红素吸附的影响。实验结果表明,葡萄糖醛酸化双介孔硅对胆红素的吸附快速、高效,吸附平衡为15 min,最大吸附量为(246.78.3)mg/g,血清蛋白的存在对胆红素吸附的影响不大。胆红素吸附符合二级吸附动力学模型和Langmuir等温吸附模型。  相似文献   

6.
A chemiluminescent dual signal amplification strategy for the determination of α-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO2 (Au/SiO2) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab2) co-immobilized into the mesoporous SiO2 nanoparticles (HRP-Ab2/SiO2) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO2, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab2 in HRP-Ab2/SiO2 were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H2O2 under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL−1 and 0.5 to 100 ng mL−1 with a detection limit of 0.005 ng mL−1 (3σ). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.  相似文献   

7.
Bai  Bingbing  Gu  Chaoyu  Lu  Xiaohui  Ge  Xingyu  Yang  Junling  Wang  Chenfei  Gu  Yongchun  Deng  Aidong  Guo  Yuehua  Feng  Xingmei  Gu  Zhifeng 《Nano Research》2021,14(12):4577-4583

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.

  相似文献   

8.
A simple and green method of depositing monometallic (Ru, Rh, Pd) and bimetallic nanoparticles (Ru-Rh, Ru-Pd and Rh-Pd) on an ordered mesoporous silica support (MCM-41) in supercritical carbon dioxide (scCO2) is described. Metal acetylacetonates were used in the experiments as CO2-soluble metal precursors. Suitable temperature and pressure conditions for synthesizing each kind of nanoparticles were applied in this study. The characterizations of these nanocomposites were performed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The nanoparticles had average sizes varying from 2 nm to 8 nm. The Ru nanoparticles were clearly shown to be inside the mesopores of MCM-41 from the TEM image. These nanocomposites used as catalysts for hydrogenation was demonstrated. The efficiency of the scCO2 prepared Ru/MCM-41 catalyst was nearly 8 times than that of a Ru/MCM-41 catalyst prepared by conventional impregnation method.  相似文献   

9.
The process of ac electric conductivity in thin films of the poly[Cu(mSalpn-1,3)] complex compound has been studied for the first time. The experimental frequency dependence of the ac conductivity agrees with the model based on the hopping mechanism of charge transfer. The effect of temperature has been studied and the activation energies for charge carriers involved in the conductivity are determined. The role of the metal center (divalent copper) and the influence the electron structure of a ligand environment on the charge exchange in the metallopolymer structure are discussed.  相似文献   

10.
11.
Cubic FDU-12 type mesoporous silicas with enlarged pores and carboxylic acid (–COOH) functionality in the pore channels (denoted as LP-FTC-x) are synthesized using tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES) as silica sources, Pluronic F127 triblock copolymer as template, and trimethylbenzene (TMB) as pore expander, and utilized them as supports for enzyme immobilization. When the –COOH content is increased from 0 to 30%, the pore size of LP-FTC-x decreases from 23.6 to 11.1 nm, and its particle size decreases from around 2 μm to 600–800 nm. The material exhibits a high papain adsorption capacity (895 mg g?1) with a low leaching rate at pH 8.2 due to the well-defined surface chemistry in the pore channel. The adsorption kinetics and isotherms follow the pseudo-second-order model and the Langmuir isotherm model, respectively. The excellent structural properties of LP-FTC-x are also advantageous for enhancement in stability of enzyme toward the temperature, solution pH, and incubation time variations.  相似文献   

12.
This research proposed the use of a mesoporous silica material (SiO2) as a Cu(I) adsorbent in a pre-treatment of cyanide effluents employed in gold and silver extraction. Two copper sources were employed: a [Cu(CN) X ]?(X+1) standard solution, and a cyanide solution obtained from an ore of Peña de Bernal, Chihuahua, México, which was named Cu(I)–CN–PB. Mesoporous silica removes around 90 % of the Cu(I)–CN at 30 min in Cu(I)–CN solutions with 50 ppm of the metals; while, in a solution with a high concentration of copper (311 ppm), around 52 % was removed. The adsorption dates were adjusted following the Langmuir model; obtained a maximum adsorption capacity (Q 0) of 8.01 mg g?1 and a separation factor (R L) lower than one, which indicates a favorable thermodynamic adsorption process of Cu(I)–CN by SiO2. However, a similar copper removal capability and low selectivity was observed when Cu(I)–CN–PB was employed as the copper source. Therefore, a modification on the silica’s surface with phenyl groups was performed, in order to enhance the metallic ion selectivity. IR spectroscopy and TGA/DTA analysis confirmed the coupling of organic groups; on the other hand, nitrogen adsorption indicated a decrease on the BET surface area of the silica at 76 %, a modification of the silica structure was observed with the formation of two pore diameter (3.6 and 5.37 nm); 13C CP-MAS NMR indicated two different chemical shifts that corresponded to the phenyl groups on the two different pores observed. Phenyl groups enhance the selectivity for copper in the cyanide effluent, increasing the removal to 99 %.  相似文献   

13.
A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN)2-PHAL) and K2Os(OH)4·2H2O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transform Infrared spectroscopy, N2 adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO4-(QN)2PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.  相似文献   

14.
15.
A novel fluorescent zinc sensor was designed and synthesized on ordered mesoporous silica material, MCM-41, with N-(quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide (QTEPA; 3) using a simple one-step molecular self-assembly of the silane. The solution and solid samples were characterized using solid-state nuclear magnetic resonance, transmission electron microscopy, diffuse-reflectance infrared Fourier transform, and thermogravimetric analysis techniques. The QTEPA-modified MCM-41 (4) shows 3-fold fluorescence emission enhancement and about a 55 nm red shift upon addition of 1 μM Zn(II) ions in a Tris-HCl (pH 7.22) aqueous buffer solution. The UV-vis absorption maximum is at 330 ± 5 nm, and the fluorescence emission maximum wavelength is at 468 nm, with an increase in quantum yield from 0.032 to 0.106 under the same conditions. The presence of other metal ions has no observable effect on the sensitivity and selectivity of 4. This system selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The MCM-41-based systems have the advantage that they can be employed in aqueous solutions without any aggregation.  相似文献   

16.
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.  相似文献   

17.
离子液体具有独特的性质,将具有高表面积的硅材料用离子液体进行改性,再挂载金属化合物,可制得集离子液体中均相催化和固体非均相催化体系于一身的新型催化剂,用于多种有机反应.这些催化剂具有高效、高选择性、离子液体用量少、产品易分离和催化剂易回收等优点,因有望用于化工过程的固定床反应器而受到关注.本文综述了2005年以来硅材料固载离子液体挂载金属催化剂的应用研究成果.  相似文献   

18.
Fluorescent receptor 1 immobilized mesoporous silica (FMS) possessing the diaminopyridine moiety as a fluorescent receptor was fabricated by sol-gel reaction. The binding ability of FMS with nuclobases was evaluated by fluorophotometry. Interestingly, among nucleobases, addition of thymidine to a suspension of FMS in water resulted in the largest decrease in fluorescence intensity of diaminopyridine in FMS. These results indicate that FMS recognizes selectively thymidine in nucleobase.  相似文献   

19.
In this study, a new Pb(II) ion-imprinted polymer (Pb(II)-IIP), which can be used for selective adsorption of Pb(II) from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared spectrometry, X-ray diffraction, transmission electron microscope and nitrogen adsorption-desorption isotherm. The results showed that the synthesized polymer possessed high ordered mesoporous structure. The adsorption behavior of the adsorbents for Pb(II) was investigated using batch experiments. The Pb(II)-IIP showed fast kinetics, high selectivity and satisfied adsorption capacity for adsorption of Pb(II). Under the optimum experimental condition, Pb(II) adsorption process over Pb(II)-IIP follows pseudo-second-order reaction kinetics and follows the Langmuir adsorption isotherm. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of Pb(II) onto Pb(II)-IIP was a spontaneous and exothermic nature of the process.  相似文献   

20.
This article reported on the synthesis of SSCBB, a new solid-phase, sol-gel silica chemically bonded with [bis (2,4,4-trimethylpentyl) phosphinate], (BTMPP, anion of Cyanex 272) prepared with a sol-gel method, and its application as a reusable solid-phase sorbent for the selective removal of Cu(II), Ni(II), and Zn(II). The synthesized SSCBB was characterized by FTIR, EDX, SEM, BET, TGA, and DSC. To evaluate its extraction performance, various parameters such as equilibration time, pH of the aqueous phase, solid to liquid ratio, initial copper ion concentration and reusability of SSCBB were studied. Equilibrium time was found to be 60 min for all metals and almost 100% extraction occurred at a pH of 4.0, 6.0, and 8.8 for Zn(II), Cu(II), and Ni(II) extraction, respectively. The maximum extraction capacity was found to be 0.2 mmol of Cu(II) per gram of SSCBB. Moreover, it was also regenerated and reused for subsequent recovery in ten cycles. The uptake performance of regenerated SSCBB after ten regeneration cycles was found to be the same as the freshly prepared SSCBB. Finally, based on the results, a proposed flow sheet for the removal of Cu(II), Ni(II), and Zn(II) was provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号