首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zirconium umbite, K2ZrSi3O9·H2O, is a microporous framework ion exchanger whose potential as a carrier for Zn2+ ions in antimicrobial formulations has not yet been investigated. Accordingly, batch Zn2+-exchange kinetics of synthetic zirconium umbite (K-UM) and the subsequent antimicrobial action of the zinc-bearing phase (Zn-UM) against Staphylococcus aureus and Escherichia coli are reported. Nonstoicheiometric over-exchange of Zn2+ for K+ was observed and attributed to hydrolysis and complexation reactions of Zn2+ within the umbite framework. The exchange process, which was described by a simple pseudo-first-order model (k 1 = 2.69 × 10−4 min−1, R 2 = 0.992), did not achieve equilibrium within 120 h at 25 °C, by which time the uptake of zinc was found to be 1.04 mmol g−1. The minimal bactericidal concentrations of Zn-UM for E. coli and S. aureus were found to be >10 g cm3 and <1.0 g cm3, respectively.  相似文献   

2.
Adsorption of NO on vanadia–titania samples pre-subjected to different reduction treatments has been studied by FTIR spectroscopy. When the NO adsorption is performed at 85 K on oxidized samples, antisymmetric NONO species, typical for V5+ sites, are detected and characterized by bands at 1779 and 1686 cm−1. At ambient temperature, however, adsorption is negligible and only with time reactive adsorption occurs producing NO+ (2120 cm−1), nitro/nitrato species (bands in the 1650–1100 cm−1 region) and weakly adsorbed NO (broad band at 1915 cm−1). Adsorption of NO at ambient temperature on reduced samples results in the formation of two types of species: (i) V4+(NO)2 dinitrosyls characterized by νs(NO) and νas(NO) at 1903–1880 and 1769–1753 cm−1, respectively, and (ii) V3+(NO)2 complexes, which give rise to νs(NO) at 1834–1822 cm−1 and νas(NO) at 1697–1685 cm−1. At low temperature the dinitrosyls are transformed into species in which more than one (NO)2 dimer is attached to one cationic site. Addition of O2 to NO, preadsorbed on reduced vanadia–titania samples, results in a fast oxidation of the V3+(NO)2 species, whereas the V4+(NO)2 complexes are more stable and do not disappear completely in the presence of oxygen. The results obtained suggest that NO is a convenient probe molecule for the analysis of the oxidation state of vanadium in vanadia–titania catalysts. To prevent oxidation of reduced vanadium sites, low equilibrium pressures of NO and registration of the IR spectrum soon after the NO admission are recommended. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary UV curable, transparent acrylic resin/titania organic–inorganic hybrid films were prepared by controlled hydrolysis of titanium tetrabutoxide (TTB) in Span85/Tweeen80 reverse micelles and subsequent in situ photopolymerization of acrylic monomers. The qualitative content of TiOTi group and TiOH was monitored by FTIR spectrum, and the thermal stability and film surface were characterized by TGA, DSC and AFM, respectively. TGA data show that TiO2-hybrid films can upgrade the decomposition onset temperature and the temperature at which there is a maximum mass loss rate (Tmax). DSC data show that prolonged exposure to UV light and post-thermal treatment can decrease the Tonset and Tpeak of the exothermal peak and the condensation temperature between TiOH, and increase ΔH of the exothermal peak. FTIR spectra show the presence of two νs(COO-) modes with the νa-νs splitting magnitude (Δν∼87 cm-1 and 148 cm-1, respectively), suggesting that acrylic acid acts as a bidentate coordination mode and therefore chemical linkages exist between inorganic and organic phases. AFM phase images showed the presence of inorganic domains, with mean size of 21.6 nm–28.8 nm, were uniformly dispersed in the polymeric networks.  相似文献   

4.
Oxidative polycondensation reaction conditions of [(2-mercaptophenyl)iminomethyl]-2-naphthol (2-MPIM-2N) were studied using oxidants such as air and NaOCl in an aqueous alkaline medium between 40 °C and 90 °C. The structure of poly-[(2-mercaptophenyl)iminomethyl]-2-naphthol (P-2-MPIM-2N) was characterized by 1H- 13C NMR, FT-IR, and UV–Vis spectroscopy, size exclusion chromatography (SEC), and elemental analysis. At optimum reaction conditions, the yield of P-2-MPIM-2N was found to be 78 and 82% for air and NaOCl oxidants, respectively. From SEC measurements, the number-average molecular weight (M n ), weight-average molecular weight (M w ) and polydispersity index (PDI) of P-2-MPIM-2N are 2900, 3500 g mol−1 and 1.207; 2200, 2500 g mol−1 and 1.136, for air and NaOCl oxidants, respectively. Polymer–metal complexes were synthesized by the reaction of P-2-MPIM-2N with Co2+, Cu2+, Zn2+, Pb2+ and Cd2+ ions. The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and electrochemical band gaps (Eg E^{\prime}_{g} ) of 2-MPIM-2N and P-2-MPIM-2N were −5.97, −2.66 and 3.31 eV and −5.82, −2.68 and 3.14 eV, respectively. The conductivity of polymer and polymer–metal complexes were determined in the solid state. Conductivity measurements of doped and undoped Schiff base polymer and polymer–metal complexes were carried out at room temperature and atmospheric pressure by the four-point probe technique using an electrometer. The conductivities of the polymer and polymer–metal complexes increased when iodine was used as doping agent.  相似文献   

5.
Lipase (E.C. 3.1.1.3) from walnut seed was purified 28.6-fold with 31% yield using Sephadex G-100 gel chromatography. Olive oil served as good substrate for the enzyme. The optimum pH and temperature were 9.0 and 70 °C, respectively. The lipase was stable between 30 and 80 °C for 5 min. K m and V max values were determined as 48 mM and 23.06 × 10−3 U/min mg for triolein as substrate. Lipase activity was slightly reduced by Cu2+, Ca2+, Hg2+, Mn2+, and Ni2+ ions, while Mg2+ and Zn2+ had no effects. Anionic surfactant sodium dodecyl sulfate stimulated lipase activity while non-ionic surfactants Tween-80 and Triton X-100 had negligible effects on enzymatic activity. The enzyme activity was not affected by 50 mM urea and thioacetamide. Potassium ferricyanide, n-bromosuccinamide and potassium cyanide reduced the enzyme activity. The enzyme showed a good stability in organic solvents, the best result being in n-hexane (113% residual activity). The activity of dialysate was maintained approximately 80% for 1 year at −20 °C.  相似文献   

6.
A comparative study was conducted to assess the contact and fumigant toxicities of eleven monoterpenes on two important stored products insects—, Sitophilus oryzae, the rice weevil, and Tribolium castaneum, the rust red flour beetle. The monoterpenes included: camphene, (+)-camphor, (−)-carvone, 1-8-cineole, cuminaldehyde, (l)-fenchone, geraniol, (−)-limonene, (−)-linalool, (−)-menthol, and myrcene. The inhibitory effect of these compounds on acetylcholinesterase (AChE) activity also was examined to explore their possible mode(s) of toxic action. Although most of the compounds were toxic to S. oryzae and T. castaneum, their toxicity varied with insect species and with the bioassay test. In contact toxicity assays, (−)-carvone, geraniol, and cuminaldehyde showed the highest toxicity against S. oryzae with LC50 values of 28.17, 28.76, and 42.08 μg/cm2, respectively. (−)-Carvone (LC50 = 19.80 μg/cm2) was the most effective compound against T. castaneum, followed by cuminaldehyde (LC50 = 32.59 μg/cm2). In contrast, camphene, (+)-camphor, 1-8-cineole, and myrcene had weak activity against both insects (i.e., LC50 values above 500 μg/cm2). In fumigant toxicity assays, 1-8-cineole was the most effective against S. oryzae and T. castaneum (LC50 = 14.19 and 17.16 mg/l, respectively). Structure-toxicity investigations revealed that (−)-carvone—, a ketone—, had the highest contact toxicity against the both insects. 1-8-Cineole—, an ether—, was the most potent fumigant against both insects. In vitro inhibition studies of AChE from adults of S. oryzae showed that cuminaldehyde most effectively inhibited enzyme activity at the two tested concentrations (0.01 and 0.05 M) followed by 1-8-cineole, (−)-limonene, and (l)-fenchone. 1-8-Cineole was the most potent inhibitor of AChE activity from T. castaneum larvae followed by (−)-carvone and (−)-limonene. The results of the present study indicate that (−)-carvone, 1,8-cineole, cuminaldehyde, (l)-fenchone, and (−)-limonene could be effective biocontrol agents against S. oryzae and T. castaneum.  相似文献   

7.
The nature of the Keggin ions of tungstophosphoric acid interacting with Ce0.5Zr0.5O2 solid solution has been investigated. The vibrational study shows additional IR features at 1051 and 957 cm−1 which are correlated to the primary Keggin anions interacting with Lewis sites involving Ce4+ and Zr4+ ions, and thus affecting the P–O and W=Oterminal bonds. The IR study indicates the formation of interfacial Ce4+–O–W and Zr4+–O–W bonds. The chemisorbed Keggin molecular layers on Ce0.5Zr0.5O2 show activity towards conversion of acetophenone to styrene by Meerwein–Ponndorf–Verley reduction followed by dehydration. The activity is correlated with the relative intensities of IR peaks at 1051 and 957 cm−1 of the perturbed Keggin molecular layers.  相似文献   

8.
Takashi Nakamura 《Lipids》1985,20(3):180-186
The chemical structures of lipid degradation products capable of reacting with amino acids and forming red pigments were investigated. The red pigment-forming substances (RPS's) derived from autoxidized linolenate in triglyceride of linseed oil were purified successively by gel chromatography on Sephadex LH-20, column chromatography and TLC on Silica gel 60, and HPLC on μ-Porasil. Consequently, three types of RPS's were isolated. IR spectra of RPS's were similar, except for slight differences in the fingerprint region (1300—650 cm−1). These substances included the OH group (3500 cm−1 region), conjugated aldehyde (νC=0 1688 cm−1, νC=C 1635 cm−1) and ketone (νC=0 1740 cm−1) in their molecules. RPS's were analyzed by GLC and GC-MS after derivatization with dimethylhydrazine and/or trimethylsilyl reagents, before and after the reduction with NaBH4 and/or hydrogenation with PtO2. The fragmentation patterns indicated the presence of an ethyl group in addition to the functional groups described above, and the molecular formula was estimated to be C10H14O3. Further elucidation of the structures was obtained by13C- and1H-NMR analyses, and evidence was obtained for the presence of a hydroxypentanone ring, a PG-like structure. The sequence of the protons on the ring carbons was unequivocally deduced from the double resonance experiments. All the data taken together suggested that the RPS's were the stereoisomer of 3-(2-ethyl-5-hydroxy-3-oxo) cyclopentanyl-2-propenal. Presented at the General Meeting of JSSF held in Tokyo University of Fisheries, Tokyo, April 1983.  相似文献   

9.
The electrochemical properties of amorphous vanadium pentoxide (V2O5) thin films deposited by reactive r.f.-sputtering were investigated using galvanostatic charge/discharge cycling and galvanostatic intermittent titration technique (GITT). As x in Li x V2O5−y increased (x = 0–2.0), the electromotive force of the lithium (Li)∣1 M LiClO4–propylene carbonate∣Li x V2O5−y cell decreased gradually without a potential plateau or an abrupt potential reduction, demonstrating that an irreversible structural change did not occur in the entire Li content. Chemical diffusivity of the Li ion in the Li x V2O5−y thin film measured using GITT was determined to be 4 × 10−13–7 × 10−14 cm2 s−1 in the Li content range investigated.  相似文献   

10.
Electrochemical (EC) oxidation of distillery wastewater with low (BOD5/COD) ratio was investigated using aluminum plates as electrodes. The effects of operating parameters such as pH, electrolysis duration, and current density on COD removal were studied. At a current density of 0.03 A cm−2 and at pH 3, the COD removal was found to be 72.3%. The BOD5/COD ratio increased from 0.15 to 0.68 for an optimum of 120-min electrolysis duration indicating improvement of biodegradability of wastewater. The maximum anodic efficiency observed was 21.58 kg COD h−1 A−1 m−2, and the minimum energy consumption observed was 0.084 kWh kg−1 COD. The kinetic study results revealed that reaction rate (k) decreased from 0.011 to 0.0063 min−1 with increase in pH from 3 to 9 while the k value increased from 0.0035 to 0.0102 min−1 with increase in current density from 0.01 to 0.03 A cm−2. This study showed that the COD reduction is more influenced by the current density. The linear and the nonlinear regression models reveal that the COD reduction is influenced by the applied current density.  相似文献   

11.
A kinetic study of the prooxidant effect of α-tocopherol was performed. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) by α-tocopheroxyl radical in toluene were determined, using a double-mixing stopped-flow spectrophotometer. The second-order rate constants (k p) obtained are <1 × 10−2 M−1 s−1 for 1, 1.90 × 10−2 M−1 s−1 for 2, 8.33 × 10−2 M−1 s−1 for 3, 1.92 × 10−1 M−1 s−1 for 4, and 2.43 × 10−1 M−1 s−1 for 5 at 25.0 °C. Fatty acid esters 3, 4, and 5 contain two, four, and six –CH2– hydrogen atoms activated by two π-electron systems (–C=C–CH2–C=C–). On the other hand, fatty acid ester 2 has four –CH2– hydrogen atoms activated by a single π-electron system (–CH2–C=C–CH2–). Thus, the rate constants, k abstr/H, given on an available hydrogen basis are k p/4 = 4.75 × 10−3 M−1 s−1 for 2, k p/2 = 4.16 × 10−2 M−1 s−1 for 3, k p/4 = 4.79 × 10−2 M−1 s−1 for 4, and k p/6 = 4.05 × 10−2 M−1 s−1 for 5. The k abstr/H values obtained for 3, 4, and 5 are similar to each other, and are by about one order of magnitude higher than that for 2. From these results, it is suggested that the prooxidant effect of α-tocopherol in edible oils, fats, and low-density lipoproteins may be induced by the above hydrogen abstraction reaction.  相似文献   

12.
Electrochemical impedance spectroscopy (EIS) was used to study the fouling produced due to the adsorption of poly(vinyl sulfonic acid) on polyethersulfone membrane during metal ion recovery by polymer-enhanced ultrafiltration (PEUF). A solution of PVSA (40 mM in monomeric unit and pH 3.0, 4.5, and 6.0) was placed in a ultrafiltration cell, and then a stream of metal ions (2.0 mM in Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+) was passed from reservoir to cell. Fouled membranes were studied by EIS at low and intermediate frequencies. Measurements of hydrodynamic permeability and ATR-FTIR spectra were also obtained. Different relaxation processes were observed with characteristic frequencies (f 0) ~ 78 kHz and f 0 ~ 3562 kHz for active layer and clean membrane, respectively, while the frequencies for the fouled membrane f 0 = ~79.4 and f 0 = ~2511.9 kHz (pH 3.0). The value of f 0 could not be defined at pH 6.0. The relaxation times obtained were in the order of ×10−5 and ×10−3 s approximately for all cases. Our results suggest that relaxation mechanisms, at intermediate frequencies, can mainly be associated to polarization processes or to the migration of charge carriers.  相似文献   

13.
A sandwich-like 2D infinite framework of {[Cd(pbbm)2(SO3FcSO3)]·(CH3OH)2·(H2O)6} n (1) with nanosized porous structure [Fc(SO3)2Na2 = ferrocene-1,1′-disulphonate, pbbm = 1,1′-(1,3-propylene)-bis-1H-benzimidazole] was prepared by combining d 10 Cd2+ ions with highly conjugated pbbm and disodium ferrocene-1,1′-disulfonate. Experimental results show that 1 could serve as a new fluorescent probe for the detection of many divalent metal ions in water, such as Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+ and Pb2+, and trace organic solvents, including acetone, toluene, methylene chloride, ether, tetrahydrofuran, and methanol. The main product was very different from previous chemosensory materials that only identify one or two metal ions. The powdery multipurpose chemosensory materials proposed here could also sequester dangerous heavy metal ions, especially Pb2+. A computational study of ferrocene-1,1′-disulfonate and 1 gave insight into the process of ion exchange and sorption. This study introduces a promising new field of fluorescent chemosensors based on nanoporous coordination polymers with free functional groups.  相似文献   

14.
Fe-doped ZnO nanoneedles (NDs) were fabricated by an Ar+ ion sputtering technique operated at room temperature. The as-grown samples show both ferromagnetic and lasing properties. The saturated magnetization moment was measured from 0.307 to 0.659 emu cm−3 at the field of 10 kOe with various Fe concentrations. Intense ultraviolet random lasing emission was observed from Zn1 − x Fe x O NDs at room temperature. The X-ray photoelectron spectroscopy result reveals that the doped Fe atoms occupy the Zn sites and lead to a decrease in oxygen deficiency.  相似文献   

15.
The kinetics of the oxirane cleavage of epoxidized soybean oil (ESO) by methanol (Me) without a catalyst was studied at 50, 60, 65, 70 °C. The rate of oxirane ring opening is given by k[Ep][Me]2, where [Ep] and [Me] are the concentrations of oxiranes in ESO and methanol, respectively and k is a rate constant. From the temperature dependence of the kinetics thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), free energy of activation (ΔF) and activation energy (ΔE a) were found to be 76.08 (±1.06) kJ mol−1, −118.42 (±3.12) J mol−1 k−1, 111.39 (±2.86) kJ mol−1, and 78.56 (±1.63) kJ mol−1, respectively. The methoxylated polyols formed from the oxirane cleavage reaction , were liquid at room temperature and had three low temperature melting peaks. The results of chemical analysis via titration for residual oxiranes in the reaction system showed good agreement with IR spectroscopy especially the disappearance of epoxy groups at 825, 843 cm−1 and the emergence of hydroxy groups at the OH characteristic absorption peak from 3,100 to 3,800 cm−1.  相似文献   

16.
A DRIFT study of ZnHZSM-5 zeolites with Si/Al ratios of 15 or 41 and a Zn loading of 0.8 wt% revealed a high thermal stability of bridging OH groups that was practically the same as in the pure hydrogen forms. It was concluded that the incipient wetness impregnation of NH4ZSM-5 zeolite with zinc nitrate and the subsequent high-temperature treatment results only in a minor amount of ion exchange. A considerable part of the modifying zinc forms nanometric ZnO clusters inside the channels of the zeolite. The use of the low-temperature adsorption of dihydrogen as a probe indicated the appearance, after high-temperature vacuum pretreatment, of three different Lewis acid sites connected with coordinatively-unsaturated Zn2+ ions. The strongest Lewis sites, with an H–H stretching frequency of adsorbed molecular hydrogen of 3940 cm−1, dissociatively adsorbed hydrogen, methane and propane at both room and elevated temperatures. These sites are represented either by Zn2+ ions on the walls of the main channels of the zeolite (α sites according to Mole et al.) or by Lewis-base pairs on the surface of nanometric clusters of zinc oxide. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The chronopotentiometric technique was used to analyze the electrodeposition of Fe–Zn film on a Pt electrode. Three different Fe3+/Zn2+ molar ratios, Fe26.8 wt.%–Zn73.2 wt.%, Fe46 wt.%–Zn54 wt.% and Fe66.6 wt.%–Zn33.4 wt.%, were used in a solution containing sorbitol as the Fe3+-complexing agent, with a total concentration of the two cations of 0.20 M. Coloration of Fe–Zn films were light gray, dull dark gray and bright graphite, depending on the Fe3+/Zn2+ ratios in the deposition bath. The highest stripping to deposition charge density ratio was 47.5%, at 15 mA cm−2 in the Fe26.8 wt.%–Zn73.2 wt.% bath. Energy dispersive spectroscopy indicated that the codeposition type of Fe and Zn in the Fe26.8 wt.%–Zn73.2 wt.% and Fe46 wt.%–Zn54 wt.% baths was normal at all jd tested, while in the Fe66.6 wt.%–Zn33.4 wt.% bath there was a transitional current density from normal to equilibrium codeposition at 50 mA cm−2. Scanning electron microscopy showed that Fe–Zn films of high quality were obtained from the Fe66.6 wt.%–Zn33.4 wt.% and Fe26.8 wt.%–Zn73.2 wt.% baths, since the films were smooth. X-ray analysis of the Zn–Fe films obtained at 15, 25 and 50 mA cm−2, in the Fe26.8 wt.%–Zn73.2 wt.%, Fe46 wt.%–Zn54 wt.% and Fe66.6 wt.%–Zn33.4 wt.% plating baths, suggested the occurrence, in general, of a mixture of Fe11Zn40, Fe4Zn9, βFe, αFe, Fe2O3, Zn and PtZn alloys in the deposit.  相似文献   

18.
In order to prepare copper selective chelating resin, β-alanine functionality was introduced into polystyrene matrix by the aza-Michael addition of poly(4-aminostyrene) to acrylic acid. The resin was characterized by elemental analysis and pH potentiometric titration in terms of the degree of carboxyethylation (DS = 1.3) and protonation constant of the amine group (log K H = 7.48). The optimum pH for Cu2+ adsorption was found to be 7–8 (0.1 M ammonium acetate buffer) and the contact time required to achieve the equilibrium was about 1 h. The adsorption kinetics follows a pseudo-second order reaction rate, where the initial stage is governed by intraparticle diffusion. The adsorption isotherm data are in good agreement with the Langmuir model. The resin shows high adsorption capacity (1.26 mmol/g) and exhibits high selectivity toward Cu2+ ions with no affinity to Zn2+, Co2+, Cd2+ ions and only weak affinity to Ni2+ ions.  相似文献   

19.
Saccharomyces cerevisiae cells were demonstrated to contain lysophosphatidylcholine (lysoPtdCho) acyltransferase (E.C. 2.3.1.23) activity. The enzyme displayed K m(app) of 69 μM for lysoPtdCho and 152 μM for oleoyl CoA. Enzyme activity was not affected by the addition of 1 mM Mg2+, Mn2+, Ca2−, or 200 mM EDTA. However, Zn2+ inhibited lysoPtdCho acyltransferase activity to 33% control values at 0.1 mM and to 7% at 1.0 mM Zn2+. To further explore the possibility that lysoPtdCho acyltransferase may contain a high-affinity Zn2+ binding site, we tested the strong Zn2+ chelator o-phenanthroline for its ability to inhibit enzyme activity. LysoptdCho acyltransferase activity was inhibited to 18 and 27%, respectively, those of control values in the presence of 2 and 1 mM o-phenanthroline, implying that a high-affinity Zn2+ binding site exists in lysoPtdCho acyltransferase or in an accessory protein that is essential for protein stability and/or activity. Saccharomyces cerevisiae lysoPtdCho acyltransferase activity displayed a broad lysoPtdCho fatty acyl chain substrate specificity utilizing lysoPtdCho molecules ranging in length from C10−C20 (the entire range tested). In addition, the enzyme was capable of using the ether-linked analog of lysoPtdCho, 1-O-alkyl-2-hydroxy-sn-3-glycerophosphocholine, as a substrate. The ability of S. cerevisiae to incorporate radiolabeled 1-O-alkyl-2-hydroxy-sn-3-glycerophosphocholine into phosphatidylcholine in vitro was exploited to demonstrate a direct precursor-product relationship between lysoPtdCho molecules and their incorportation into phosphatidylcholine in vivo. Identical labeling results were obtained in S. cerevisiae cells disrupted for their major transacylase activity, PLB1, demonstrating that the incorporation of lysolipid was via acyltransferase, and not transacylase, activity.  相似文献   

20.
Electron-transfer mediators are needed to transport charge between electrodes and enzymes, as enzymes hardly react on conventional electrode surfaces. Several complex ions were tested for their stability, absorbance and ability to work as electron-transfer mediators. A set of five stable mediators covering the potential range from 0 mV to +800 mV vs. SHE was established: [Fe-DCTA]0/1+ (DCTA is 1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid), [Co-terpyridine2]2+/3+, [Fe(CN)6]4−/3−, [W(CN)8]4−/3− and [Mo(CN)8]4−/3−. These mediators are water-soluble, pH-independent and able to transfer one electron at a time. This set offers promising mediator candidates whenever indirect electrochemistry is needed, as is not restricted to any particular enzyme. It is especially useful for redox titrations and other enzyme research, where colourlessness is required. As all charge is consumed by the desired redox reactions, and not by degradation reactions, even amperometric and coulometric titrations are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号