首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a typical McKee-Farrar metal-on-metal hip prosthesis under a simple steady state rotation. The finite element method was used initially to investigate the effect of the cement and bone on the predicted contact pressure distribution between the two articulating surfaces under dry conditions, and subsequently to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. Both Reynolds equation and the elasticity equation were coupled and solved numerically using the finite difference method. Important features in reducing contact stresses and promoting fluid-film lubrication associated with the McKee-Farrar metal-on-metal hip implant were identified as the large femoral head and the thin acetabular cup. For the typical McKee-Farrar metal-on-metal hip prosthesis considered under typical walking conditions, an increase in the femoral head radius from 14 to 17.4 mm (for a fixed radial clearance of 79 microm) was shown to result in a 25 per cent decrease in the maximum dry contact pressure and a 60 per cent increase in the predicted minimum film thickness. Furthermore, the predicted maximum contact pressure considering both the cement and the bone was found to be decreased by about 80 per cent, while the minimum film thickness was predicted to be increased by 50 per cent. Despite a significant increase in the predicted minimum lubricating film thickness due to the large femoral head and the thin acetabular cup, a mixed lubrication regime was predicted for the McKee-Farrar metal-on-metal hip implant under estimated in vivo steady state walking conditions, depending on the surface roughness of the bearing surfaces. This clearly demonstrated the important influences of the material, design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses. Furthermore, in the present contact mechanics analysis, the significant increase in the elasticity due to the relatively thin acetabular cup was not found to cause equatorial contact and gripping of the ball.  相似文献   

2.
The elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a 28 mm diameter metal-on-metal hip prosthesis employing a metallic cup with an ultra-high molecular weight polyethylene (UHMWPE) backing under a simple steady state rotation representing the flexion/extension during walking. Both Reynolds and elasticity equations were coupled and solved numerically by the finite difference method. The elastic deformation was determined by means of the fast Fourier transform (FFT) technique using the displacement coefficients obtained from the finite element method. Excellent agreement of the predicted elastic deformation was obtained between the FFT technique and the conventional direct summation method. The number of grid points used in the lubrication analysis was found to be important in predicting accurate film thicknesses, particularly at low viscosities representative of physiological lubricants. The effect of the clearance between the femoral head and the acetabular cup on the predicted lubricant film thickness was shown to be significant, while the effect of load was found to be negligible. Overall, the UHMWPE backing was found not only to reduce the contact pressure as identified in a previous study by the authors (Liu et al., 2003) but also significantly to increase the lubricant film thickness for the 28 mm diameter metal-on-metal hip implant, as compared with a metallic mono-block cup.  相似文献   

3.
The elastohydrodynamic lubrication problem of metal-on-metal hip joint replacements was considered in this study. A simple ball-in-socket configuration was used to represent the hip prosthesis. The Reynolds equation in a spherical coordinate was adopted for the fluid-film lubrication analysis, to account for the ball-in-socket geometry. The corresponding elastic deformation was calculated by means of the finite element method in order to consider the complex ball-in-socket geometry as well as the backing materials underneath the acetabular cup. Both the Reynolds and the elasticity equations were solved simultaneously using the Newton-Raphson finite difference method. The general methodology developed was then applied to a recent experimental prototype metal-on-metal hip implant. It was shown that the backing materials underneath the acetabular cup had little influence on the predicted contact pressure and the elastic deformation at the bearing surfaces for this particular example. Both the film thickness and the hydrodynamic pressure distributions were obtained under various loads up to 2500 N. The predicted minimum lubricating film thickness from the present study was compared with a simple estimation using the Hamrock and Dowson formulae based upon an equivalent ball-on-plane model and excellent agreement was found. However, it was pointed out that for some forms of metal-on-metal hip prostheses with a thin acetabular cup, a polyethylene inlay underneath a metallic bearing insert or a taper connection between a bearing insert and a fixation shell, the general methodology developed in the present study should be used and this will be considered in future studies.  相似文献   

4.
Contact mechanics of ultra high molecular weight polyethylene (UHMWPE) cups against metallic femoral heads for artificial hip joints is considered in this study. Both the experimental measurement of the contact area and the finite element prediction of the contact radius, maximum contact pressure and maximum Von Mises stress have been carried out for a wide range of contemporary artificial hip joints. Good agreement of the contact radius has been found between the experimental measurements and the finite element predictions based upon an elastic modulus of 1000 MPa and a Poisson's ratio of 0.4 for UHMWPE material under various loads up to 2.5 kN. It has been shown that the half contact angle for all the cup/head combinations considered in this study is between 40 degrees and 50 degrees under a load of 2.5 kN. The importance of this result has been discussed with respect to the anatomical position of the cup when placed in the body and the selection of a simple wear-screening test for artificial hip joints. The predicted contact radius and maximum contact pressure from the finite element model have also been compared with a simple elasticity analysis. It has been shown that the difference in the predicted contact radius between the two methods is reduced for more conforming contacts between the femoral head and the acetabular cup and smaller UHMWPE cup thickness. However, good agreement of the predicted maximum contact pressure has been found for all the combinations of the femoral head and the acetabular cup considered in this study. The importance of contact mechanics on the clinical performance of artificial hip joint replacements has also been discussed.  相似文献   

5.
A fully coupled contact and wear model was developed in the present study for hip implants employing an ultra-high molecular weight polyethylene (UHMWPE) cup in combination with a metallic or ceramic femoral head. A simple elasticity equation based on the concept of constrained column model was employed to solve the contact mechanics between the acetabular cup and the femoral head under the three-dimensional physiological loading condition. The wear model was based on the classical Archard-Lancaster equation in common with all other studies reported in the literature. The fully coupled contact and wear model was applied to both conventional and cross-linked UHMWPE cups under a wide range of design parameters such as the clearance and the femoral head radius. The predicted linear and volumetric wear as well as their rates for conventional UHMWPE cups were found to be in good agreement with those obtained from a similar analysis by Maxian but using the finite element method for the contact mechanics analysis. The predicted maximum contact pressure was found to decrease rapidly within the first 10(6) cycles, and below the limit to cause plastic deformation within the UHMWPE cup with a nominal radial clearance of 0.2 mm. The effect of the clearance between the head and the cup on the predicted wear was found to be negligible. For the cross-linked UHMWPE cup with relatively large diameters up to 48 mm and a fixed outside diameter of 50 mm, the predicted wear, which was found to increase with increasing femoral head radius, remained small owing to the small wear factor associated with these materials. Furthermore, if the head diameter increases beyond 42 mm, a rapid increase in the contact pressure was predicted, owing to the decrease in the wall thickness of the cross-linked UHMWPE cup.  相似文献   

6.
Elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a novel metal-on-metal hip prosthesis, which consists of a cobalt-chrome alloy femoral head articulating against a cobalt-chrome alloy acetabular insert connected to a titanium fixation shell through a taper. Finite element models were developed to investigate the effect of the pelvic bone and the load on the predicted contact pressure distribution between the two bearing surfaces under dry conditions. The finite element method was used to develop elasticity models for both the femoral and the acetabular components; it was found that the elastic deformation of the acetabular insert was mainly dependent on the load, rather than the detailed pressure distribution. A modified solution methodology was accordingly developed to couple the elasticity models for both the femoral and the acetabular surfaces with the Reynolds equation and to solve these numerically by the finite difference method. It was found that a load increase from 500 to 2500 N had a negligible effect on the predicted maximum contact pressure and the minimum film thickness, due to the relatively flexible and accommodating structure of the acetabular insert. Furthermore, the predicted minimum film thickness was shown to be significantly greater than the simple estimation based on the assumption of semi-infinite solids (mono-block design) using the Hamrock and Dowson formula. The effects of the viscosity of the lubricant and the radial clearance between the femoral and the acetabular components on the predicted lubricating film thickness were investigated under both in vitro simulator testing and in vivo walking conditions.  相似文献   

7.
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry.  相似文献   

8.
Contact mechanics analysis for a typical McKee-Farrar metal-on-metal hip implant was carried out in this study. The finite element method was used to predict the contact area and the contact pressure distribution at the bearing surfaces. The study investigated the effects of the cement and underlying bone, the geometrical parameters such as the radial clearance between the acetabular cup and the femoral head, and the acetabular cup thickness, as well as other geometrical features on the acetabular cup such as lip and studs. For all the cases considered, the predicted contact pressure distribution was found to be significantly different from that based upon the classical Hertz contact theory, with the maximum value being away from the centre of the contact region. The lip on the cup was found to have a negligible effect on the predicted contact pressure distribution. The presence of the studs on the outside of the cup caused a significant increase in the local contact pressure distribution, and a slight decrease in the contact region. Reasonably good agreement of the predicted contact pressure distribution was found between a three-dimensional anatomical model and a simple two-dimensional axisymmetric model. The interfacial boundary condition between the acetabular cup and the underlying cement, modelled as perfectly fixed or perfectly unbonded, had a negligible effect on the predicted contact parameters. For a given radial clearance of 0.079 mm, the decrease in the thickness of the acetabular cup from 4.5 to 1.5 mm resulted in an increase in the contact half angle from 15 degrees to 26 degrees, and a decrease in the maximum contact pressure from 55 to 20 MPa. For a given acetabular cup thickness of 1.5 mm, a decrease in the radial clearance from 0.158 to 0.0395 mm led to an increase in the contact half-angle from 20 degrees to 30 degrees, and a decrease in the maximum contact pressure from 30 to 10 MPa. For zero clearance, although the contact pressure was significantly reduced over most of the contact area, the whole acetabular cup came into contact with the femoral head, leading to stress concentration at the edge of the cup. Design optimization of the geometrical parameters, in terms of the acetabular cup thickness and the radial clearance, is important, not only to minimize the contact stress at the bearing surfaces, but also to avoid equatorial and edge contact.  相似文献   

9.
A general axisymmetric contact mechanics model for layered surfaces is considered in this study, with particular reference to artificial hip joint replacements. The indenting surface, which represents the femoral head, was modelled as an elastic solid with or without coating, while the other contacting surface, which represents the acetabular cup, was modelled as a two-layered solid. It is shown that this model is applicable to current total hip joint prostheses employing ultra-high molecular weight polyethylene (UHMWPE) acetabular cups against metallic, metallic with coating or ceramic femoral heads as well as metal-on-metal combinations. The effect of cement is also investigated for these prostheses using this model. The use of a metallic bearing surface bonded to a UHMWPE substrate for acetabular cups is particularly examined for metal-on-metal hip joint replacements. Both the contact radius and the contact pressure distribution are predicted for examples of these total hip joint replacements, under typical conditions. Application of contact mechanics to the design of artificial hip joint replacements employing various material combinations is discussed.  相似文献   

10.
The contact mechanics in ceramic-on-ceramic hip implants has been analysed in this study using the finite element method. Only the ideal conditions where the contact occurs within the acetabular cup were considered. It has been shown that the contact pressure distribution and the contact area at the main articulating bearing surfaces depend largely on design parameters such as the radial clearance between the femoral head and the acetabular cup, as well as the thickness of the ceramic insert. For the ceramic-on-ceramic hip implants used in clinics today, with a minimum 5-mm-thick ceramic insert, it has been shown that the radius of the contact area between the femoral head and the acetabular cup is relatively small compared with that of the femoral head and the ceramic insert thickness. Consequently, Hertz contact theory can be used to estimate the contact parameters such as the maximum contact pressure and the contact area.  相似文献   

11.
The main design features of metal-on-metal (MOM) hip resurfacing prostheses in promoting elastohydrodynamic lubrication were investigated in the present study, including the femoral head diameter, the clearance, and the cup wall thickness. Simplified conceptual models were developed, based on equivalent uniform wall thicknesses for both the cup and the head as well as the support materials representing bone and cement, and subsequently used for elastohydrodynamic lubrication analysis. Both typical first- and second-generation MOM hip resurfacing prostheses with different clearances and cup wall thicknesses were considered with a fixed large bearing diameter of 50 mm, as well as a 28 mm diameter MOM total hip replacement bearing for the purpose of comparison. The importance of the head diameter and the clearance in promoting elastohydrodynamic lubrication was confirmed. Furthermore, it was also predicted that a relatively thin acetabular cup in the more recently introduced second-generation MOM hip resurfacing prostheses would be capable of improving elastohydrodynamic lubrication even further.  相似文献   

12.
The effect of porosity of articular cartilage on the lubrication of a normal human hip joint has been studied. The poroelasticity equation of articular cartilage and the modified Reynolds equation for the synovial fluid lubricant have been successfully solved under squeeze-film motion and for the conditions experienced in a normal human hip joint. It has been shown that porosity of the articular cartilage depletes the lubricant film thickness, rather than increasing it, particularly when the lubricant film thickness becomes small. Furthermore, it has been shown that articular cartilage can be treated as a single-phase incompressible elastic material in the lubrication modelling under physiological walking conditions.  相似文献   

13.
Finite-element method was employed to study the contact mechanics in metal-on-metal hip resurfacing prostheses, with particular reference to the effects of bone quality, the fixation condition between the acetabular cup and bone, and the clearance between the femoral head and the acetabular cup. Simple finite-element bone models were developed to simulate the contact between the articulating surfaces of the femoral head and the acetabular cup. The stresses within the bone structure were also studied. It was shown that a decrease in the clearance between the acetabular cup and femoral head had the largest effect on reducing the predicted contact-pressure distribution among all the factors considered in this study. It was found that as the clearance was reduced, the influence of the underlying materials, such as bone and cement, became increasingly important. Stress shielding was determined to occur in the bone tissue surrounding the hip resurfacing prosthesis considered in this study. However, the stress-shielding effects predicted were less than those observed in conventional total hip replacements. Both the effects of bone quality (reduction in elastic modulus) and the fixation condition between the cup and the bone were found to have a negligible effect on the predicted contact mechanics at the bearing surface. The loading was found to have a relatively small effect on the predicted maximum contact pressure at the bearing surface; this was attributed to an increase in contact area as the load was increased.  相似文献   

14.
A general numerical methodology was developed in the present study to analyse the elastohydrodynamic lubrication problem of a compliant layered socket against a rigid ball under steady state rotation representing flexion and extension during walking, with particular reference to artificial hip joint replacements. The general numerical methodology consisted of using the Newton-Raphson method to solve the Reynolds equation, simultaneously with the full elasticity equation using the finite element method in combination with the fast Fourier transform technique. Two specific types of acetabular cup were considered, one with ultra-high molecular weight polyethylene used in current total hip joint replacements, and one with polyurethane proposed for compliant layered 'cushion form bearings' for future developments. The film thickness and the pressure distribution for both cups were obtained under a wide range of operating conditions. The predicted central or average film thicknesses within the contact conjunction were compared with those estimated from various simplified theories available in the literature. A simple analytical methodology was consequently established to estimate the lubricating film thickness in a compliant layered socket, based on the corresponding ball-on-plane model and the consideration of the curvature effect.  相似文献   

15.
A full fluid ball-in-socket elastohydrodynamic lubrication (EHL) analysis of an artificial hip joint made of a metallic femoral head and ultra-high molecular weight polyethylene (UHMWPE) acetabular cup was considered. Since artificial hips operate in a mixed lubrication mode, wear occurs and wear particles lead to reduced hip lifetimes. This study involves simulating these particles within the lubrication regime. Hip deformation was compared to models employing finite element analysis and the spherical fast-Fourier transform technique. Particle modeling results were compared to suspension modeling experiments by other researchers. Results show a strong influence of lubricant fluid velocity on that of the wear particles.  相似文献   

16.
The contact mechanics in ceramic-on-ceramic hip implants are investigated in this study under the microseparation condition where the edge contact occurs between the superolateral rim of the acetabular cup and the femoral head. A three-dimensional finite element model is developed to examine the effect of the microseparation distance between the femoral head and the acetabular cup on the contact area and contact stresses between the bearing surfaces. It is shown that microseparation leads to edge contact and elevated contact stresses, and these are mainly dependent on the magnitude of separation, the radial clearance between the femoral head and the acetabular cup, and the cup inclination angle. For a small microseparation distance (less than the diametrical clearance), the contact occurs within the acetabular cup, and consequently an excellent agreement of the predicted contact pressure distribution is obtained between the present three-dimensional anatomical model and a simple two-dimensional axisymmetric model adopted in a previous study [5]. However, as microsegregation is increased further, edge contact between the superolateral rim and the femoral head occurs. Consequently, the predicted contact pressure is significantly increased. The corresponding contact area resembles closely the stripe wear pattern observed on both clinically retrieved and simulator-tested ceramic femoral heads [8, 9, 11]. Furthermore, introducing a fillet radius of 2.5 mm at the mouth of the acetabular cup is shown to reduce the contact stress due to edge contact, but only under relatively large microseparation distances.  相似文献   

17.
Metal-on-metal hip joint tribology   总被引:3,自引:0,他引:3  
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.  相似文献   

18.
Design considerations for cushion form bearings in artificial hip joints.   总被引:1,自引:0,他引:1  
Lubrication mechanisms and contact mechanics have been analysed in a new generation of 'cushion form' bearings for artificial hip joints, which comprise low elastic modulus layers on the articulating surfaces. Comparisons have been made with 'hard' bearings used in existing prostheses and also with the natural hip joint. Lubricating film thicknesses are enhanced by larger contact areas and lower contact pressures. For a fixed contact area, simultaneous changes in layer thickness and radial clearance have been shown to have a small effect on elastohydrodynamic film thickness. Hard bearings designed with the same contact area as the cushion bearings produced a similar film thickness, but lubricant film thickness is not optimized in current designs. The main advantage of using a cushion bearing with low elastic modulus layers was found to be associated with microelastohydrodynamic lubrication. Careful selection of the elastic modulus is important in order to ensure that this lubrication regime was effective. Low elastic modulus layers may also produce local deformations, which enhance squeeze film action. The elastic modulus of the material should not be lower than necessary to produce effective microelastohydrodynamic lubrication, as a further reduction in modulus only increases the strain distribution in the material. A lubricant film thickness of 0.3 microns has been predicted for a cushion hip prosthesis with a femoral head diameter of 32 mm and radius of contact zone of 16 mm, using a 2 mm thick layer with an elastic modulus of 20 MPa.  相似文献   

19.
Abstract

A method of calculation for contact pressure between a hard femoral head and soft plastic cup of a hip joint was studied. Providing that the contact pressure is proportional to the radial deformation of the cup, an equation of equilibrium in terms of a nondimensional parameter was derived. Once the magnitude of the parameter is determined by solving the equation, the contact pressure distribution is easily obtained. An effect of the radial clearance between a femoral head and cup on contact pressure was evaluated using the equation. Furthermore, the effect of Young's modulus and thickness of a plastic cup on contact pressure were also evaluated. According to the results, contact pressure increased with an increment of clearance and Young's modulus. The contact pressure increased with a decrement of thickness of the plastic cup. The analytical solution was compared with the finite element method (FEM) analysis and the agreement was confirmed. An equation of frictional torque was also derived  相似文献   

20.
The contact mechanics in metal-on-metal hip implants employing a cobalt chromium acetabular cup with an ultra-high molecular weight polyethylene (UHMWPE) backing were analysed in the present study using the finite element method. A general modelling methodology was developed to examine the effects of the interfacial boundary conditions between the UHMWPE backing and a titanium shell for cementless fixation, the coefficient of friction and the loading angle on the predicted contact pressure distribution at the articulating surfaces. It was found that the contact mechanics at the bearing surfaces were significantly affected by the UHMWPE backing. Consequently, a relatively constant pressure distribution was predicted within the contact conjunction, and the maximum contact pressure occurred towards the edge of the contact. On the other hand, the interfacial boundary condition between the UHMWPE backing and the titanium shell, the coefficient of friction and the loading angle were found to have a negligible effect on the contact mechanics at the bearing surfaces. Overall, the magnitude of the contact pressure was significantly reduced, compared with a similar cup without the UHMWPE backing. The importance of the UHMWPE backing on the tribological performance of metal-on-metal hip implants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号