首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin blend polymer films made of poly(3-hexylthiophene-2,5-diyl) (electron donor) and fullerene derivatives as electron acceptors ([6,6]-thienylC61 butyric acid methyl ester and [6,6]-thienylC71 butyric acid methyl ester) are prepared by the spin-coating technique on indium tin oxide covered glass substrates. Time-resolved photo-induced changes of surface potentials are detected by Kelvin force microscopy (KFM). Changes of surface potentials by 10-150 mV reveal different quality and kinetics of charge generation in the two blends in short (minutes) and long (hours) time periods. This is attributed to a combination of electron accumulation, trapping, and organic material degradation under ambient conditions. As KFM characterizes the blend films directly without metal contact layer, it reveals differences in the opto-electronic behavior of the blends, which are not detected by common photovoltaic cell characterization.  相似文献   

2.
We deal with correlation between sizes of colloidal particles and minimum thickness of spin-coated thin films of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) studied by a dynamic light scattering (DLS), a scanning transmission electron microscopy coupled with an energy dispersive X-ray spectroscopy (STEM-EDX), C60-sputtering X-ray photoelectron spectroscopy (XPS), and an atomic force microscopy. Based on the various measurements, it was pointed out that, PEDOT/PSS colloidal dispersion contained majority of primary nanoparticles with mean diameter of 41 nm and 16 nm for BAYTRON P AG (denote P grade) or BAYTRON PH500 (denote PH grade) solutions, respectively, and small amount of clusters aggregated by the primary particles, based on the DLS measurement and STEM observation. On the other hand, PEDOT/PSS thin films with thickness of 44 nm and 16 nm were easily prepared by spin-coating on silicon wafers from the P and PH grade solutions, respectively. Results of STEM-EDX, DLS, and XPS measurements suggested that the PEDOT/PSS thin films consist of the randomly packed primary nanoparticle-“monolayer”.  相似文献   

3.
A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstrated that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.  相似文献   

4.
Optical loss is a crucial quality for the application of polymer waveguide devices. The optimized oxygen inductively coupled plasma etching conditions, including antenna power, bias power, chamber pressure, O2 flow rate and etching time for the fabrication of smooth vertical poly(methyl-methacrylate-glycidly-methacrylate) channel waveguide were systematically investigated. Atomic force microscopy and scanning electron microscopy were used to characterize the etch rate, surface roughness and vertical profiles. The increment of etch rate with the antenna power, bias power and O2 flow rate was observed. Bias power and chamber pressure were found to be the main factor affecting the interface roughness. The vertical profiles were proved to be closely related to antenna power, bias power and O2 flow rate. Surface roughness increment was observed when the etching time increased.  相似文献   

5.
We report the first example of a practical and efficient template-free strategy for synthesizing ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) (PSS) functionalized carbon nanotubes (FCNTs) composites by calcining a Ni(OH)2/FCNTs precursor prepared by refluxing an alkaline solution of Ni(NH3) x 2+ and FCNTs at 97 °C for 1 h. The morphology and structure were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Thermal decomposition of the precursor results in the formation of ordered mesoporous NiO/FCNTs composite (ca. 48 wt% NiO) with large specific surface area. Due to its enhanced electronic conductivity and hierarchical (meso- and macro-) porosity, composite simultaneously meets the three requirements for energy storage in electrochemical capacitors at high rate, namely, good electron conductivity, highly accessibleelectrochemical surface areas owing to the existence of mesopores, and efficient mass transport from the macropores. Electrochemical data demonstrated that the ordered mesoporous NiO/FCNTs composite is capable of delivering a specific capacitance (SC) of 526 F/g at 1 A/g and a SC of 439 F/g even at 6 A/g, and show a degradation of only ca. 6% in SC after 2000 continuous charge/discharge cycles.   相似文献   

6.
We demonstrate the adaption of a further developed Mach-Zehnder interference (MZI) microscope for the rapid 3D characterization of transparent microstructured polymer thin films. In order to quantify the accuracy of the Mach-Zehnder interferometer, comparative film thickness measurements of photolithographically patterned poly(methacrylic acid) polymer brushes are performed employing two alternative techniques: white light profilometry (WIM) and atomic force microscopy (AFM). When the refractive index of the polymer brushes is calculated from MZI data, we obtain a good agreement with results received from an independent method (ellipsometry).In contrast to surface probing techniques such as AFM or WIM, Mach-Zehnder interferometry is a transmitted light method that measures both surface height profiles and refractive index distributions. MZI thus enables the quantification of film homogeneity with respect to height and density variations at the lateral resolution of a refraction limited microscope. We conclude that MZI is an adequate tool for the rapid and non-destructive characterization of structured polymer thin films. This method should be particularly useful for production quality control of microstructured polymer thin films which possess great potential in electronic device fabrication and biotechnology.  相似文献   

7.
8.
Well-defined single layer and multilayered a-SiC:H films, deposited from tetravinylsilane at different powers by plasma-enhanced chemical vapor deposition on silicon, were intensively studied by in situ spectroscopic ellipsometry, nanoindentation, and atomic force microscopy. A realistic model of the sample structure was used to analyze ellipsometric data and distinguish individual layers in the multilayered film, evaluate their thickness and optical constants. Dispersion dependences for the refractive index were well separated for each type of individual layer, if the thickness was decreased from 315 to 25 nm, and corresponded to those of the single layer. A beveled section of the multilayered film revealed the individual layers that were investigated by atomic force microscopy and nanoindentation to confirm that mechanical properties in multilayered and single layer films are similar.  相似文献   

9.
This paper reports our recent progress on a microbial system for efficient production of biodegradable copolyester of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate], P(3HB-co-3HHx), with desirable copolymer compositions using genetically engineered bacteria. We have developed a fermentation technique to achieve high cell density cultivation of a recombinant Ralstonia eutropha using inexpensive soybean oil as a sole carbon source. In addition, we demonstrate that the use of polyhydroxyalkanoate (PHA) synthase (PhaC) mutants having an amino acid substitutions is able to vary the copolymer composition of P(3HB-co-3HHx) synthesized from soybean oil by the recombinant bacteria. On the other hand, it is also important to understand the enzymatic degradation process of PHA materials for establishing a method to regulate the rate of biodegradation. The enzymatic degradation process of P(3HB-co-3HHx) thin film using an extracellular PHB depolymerase has been studied by in situ atomic force microscopy in buffer solution. We demonstrate that the PHA depolymerase predominantly degrades the less-ordered molecular chain-packing regions along the crystallographic a-axis.  相似文献   

10.
Polymer-based photovoltaic devices have been elaborated by blending the conjugated polymer, poly(2-methoxy-5-(2′-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV) with the buckminsterfullerene, C60. The solvent used has a main influence on the optical and electrical properties of the photoactive layers. This could be attributed to different dispersion abilities of C60 in the polymer layers shown by Atomic Force Microscopy and Scanning Electron Microscopy. Its effect on the transfer and transport properties has been studied. Thin film processing conditions have been modified by the preparation of blends of solutions of the polymer in Tetrahydrofuran and fullerene in Ortho-dichlorobenzene. The resulting spin casted layers show improved morphologies implying better dispersion of the fullerenes and increased short circuit currents. A decrease in the fullerene critical concentration to form percolation paths has been demonstrated. The improvement of the photovoltaic properties of the MEH-PPV/C60 composites has been attributed to the nanosized fullerene domains formed upon phase separation. We used optical spectroscopy to study the charge transfer efficiency and electrical measurements to investigate charge transport properties in MEH-PPV:C60.  相似文献   

11.
Surface-anchored amine-terminated poly(dimethysiloxane) (PDMS) assemblies with tunable physico-chemical characteristics were fabricated with a simple two-step procedure. Firstly, 3-glycidoxypropylmethyldimethoxysilane (GPDMS) molecules were self-assembled on silicon surface, and then coupled to PDMS through a surface ring-opening reaction. The structure and morphology of the amine-terminated PDMS assemblies were characterized with various techniques such as ellipsometry, contact angle goniometer, grazing angle attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GPDMS monolayers were truly monomolecular films with a virtually normal molecular orientation of densely packed molecules, which were firmly tethered to the hydroxylated silicon substrate. Self-assembly of PDMS molecules resulted in the formation of homogeneous films ~ 6.3 nm thick with the surface roughness ~ 0.898 nm. The calculation of grafting parameters from experimental measurements indicated that the presence of homogeneous and densely grafted PDMS films allowed us to predict a “brushlike” regime for the polymer chains in good solvents.  相似文献   

12.
In this paper, polyimide surfaces irradiated by an ion-beam for liquid crystal alignment are investigated by using atomic force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. A liquid crystal cell aligned homogeneously through the ion-beam exposure exhibits electro-optic switching behavior similar to that of a rubbing-aligned liquid crystal cell. However, we found that the surface morphology and bonding molecules of ion-beam-treated polyimide surfaces show properties very different from mechanically-rubbed ones. Experimental results show that optical anisotropy of ion-beam-treated polyimide surfaces results in the formation of hydrogenated amorphous carbon-like structure with a short main-chain, while mechanical rubbing has little effect on structural and compositional variations of polyimide layers.  相似文献   

13.
A tunable and green enzyme biocatalyst route to develop superhydrophobic surfaces on microstructured poly(ethylene terephthalate) (PET) films by the tailoring of the micro- and nano scale hierarchical structures is described. Upon the aminolysis of PET films with hexamethylenediamine, the primary amine groups are covalently attached onto the PET surfaces and microstructured pattern is formed. The binding of citrate-stabilized Au nanoparticles onto the PET surfaces via the covalent bond between the gold nanoparticles and the primary amine groups introduced on the PET surfaces was followed spectroscopically. The biocatalytic enlargement of the Au nanoparticles using the enzyme-generated H2O2 as reducing agent for the reduction of AuCl4 at the attached Au nanoparticle seeds on the PET surfaces was followed by spectroscopic means and atom force microscopy (AFM). The AFM experiments indicated that micro- and nano scale hierarchical structures were tailored by the enzyme biocatalyst route. Superhydrophobic surfaces with water contact angles as high as 158.6 ± 2.0° was achieved upon the chemisorption of 1-octadecanethiol as low surface energy material. This route can be potentially applicable to superhydrophobic PET-based microfluidic devices with reduced friction surfaces.  相似文献   

14.
We successfully prepared both positive- and negative-tone patterns by applying poly(methyl methacrylate) (PMMA) as a photoresist. A positive-pattern was prepared by lithography through a photomask using 172 nm vacuum ultraviolet (VUV) light under the pressure of 103 Pa. A negative-pattern was prepared using the same VUV light under the reduced pressure of 10 Pa, followed by rinsing with toluene solution. At 103 Pa, the irradiated PMMA was effectively decomposed and eliminated. On the other hand, at 10 Pa, the irradiated PMMA became cured and resistant to etching. We subsequently utilized these positive- and negative-tone patterns as templates on indium–tin-oxide surfaces to electrodeposit copper microstructures with 10 µm lines and spaces.  相似文献   

15.
A simple method was developed to fabricate nano-patterned protein layers on poly (lactic acid) (PLA) surface by dewetting method. It was found that nano-patterned protein layers were formed on PLA surface by slow drying in high humidity. The influence of wettability and viscoelastic properties of substrates were also investigated. As a result, typical spinodal dewetting patterns formed for BSA. However, network structures were obtained for collagen at acidic condition and well-oriented fibrils at neutral pH. It was attributed to dewetting on hydrophobic substrate as well as the plasticity and variety of collagen self-assemblies.  相似文献   

16.
Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy, it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an “electronic tongue” composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition.  相似文献   

17.
制备了聚乙二醇接枝碳纳管共聚物(PEG-CNTs)。通过红外光谱(FT-IR)。荧光光谱(FS)和透射电子显微镜(TEM)对共聚物进行了表征。利用旋涂技术以云母为基片制备了共聚物薄膜,采用原子力显微镜/摩擦力显微镜(AFM/FFM)研究了薄膜表面的形貌及微摩擦学行为。复合薄膜内的聚合物组分保证了膜的表面平整,坚硬的碳纳米管组分增强了薄膜的承载能力。  相似文献   

18.
Highly conductive thin films of gold have been fabricated on glass substrates by the deposition of gold nanoparticles of two different diameters. A deposition sequence, alternating between 2.6-nm and 12-nm diameter particles, was used whereby the 2.6-nm particles served to fill in the gaps created by the assembly of the larger 12-nm diameter particles. The resulting thin films, with thicknesses of less than 35 nm, displayed high conductivities, yet were fabricated in substantially fewer deposition cycles than required by previous methods. Analysis of surface morphology performed by atomic force microscopy and scanning electron microscopy showed that the high conductivity is the result of a less porous surface structure than can be achieved through the layering of a single size nanoparticle. Conductivity analysis was performed by 4-point probe with resistivities of 5.00 ± 0.4 × 10− 6 Ω m for 5 layers and 4.49 ± 0.2 × 10− 6 Ω m for the 6-layer films.  相似文献   

19.
A method to improve the stability of ultrathin polystyrene (PS) films on SiOx/Si substrate is introduced. In this method, interfacial interactions between PS film and substrate are enhanced by addition of poly(styrene-stat-chloromethylstyrene(ClMS)) copolymer containing 5 mol% of ClMS group. The resulting slight structural modification of the copolymer does not cause phase separation in the polymer blend. On the other hand, the existence of polar ClMS groups provides anchoring sites on the polar SiOx surface via dipolar interactions. In this study, ratios of the copolymers are varied from 0 to 40 wt.% in the thin films resulting in a systematic increase of the interfacial interactions. The dewetting behaviors of all films subjected to the same annealing conditions are explored via atomic force microscopy. The analyses of root mean square roughness and dewetting area as a function of annealing time and copolymer ratio provide information about the film stability. Our results indicate that blending small quantity of the copolymer with PS significantly increases the stability of ultrathin films.  相似文献   

20.
The fabrication of monolayer/multilayer films of Polyvinylpyrrolidone (PVP) stabilized NiCo alloy nanoparticles with an average particle size 7 nm via Langmuir-Blodgett method is presented in this paper. The NiCo alloy nanoparticles were synthesized in ethanol using hydrazine hydrate as reducing agent at 60 °C in the presence of PVP and washed with a mixture of chloroform-methanol (1:1) solution to get pure PVP capped alloy nanoparticles. The NiCo alloy suspension was spread to the interface of air/water and transferred to the glass surface. The formation of a Langmuir monolayer/multilayer of PVP stabilized NiCo particles at air/water interface were revealed with the pressure-area isotherm curve. The transfer of nanoparticles on the glass surface was found to be efficient for the first six layers as exhibited by the pressure-area isotherm and increases in absorption intensity in the UV-Vis range. The atomic force microscopy results show that this film has a cubic symmetry in a two dimensional (2D) array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号