首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
从啤酒酵母中提取RNA的研究   总被引:12,自引:0,他引:12  
张帅 《酿酒》2005,33(3):66-68
研究了从啤酒酵母中提取RNA的两种方法,即浓盐法和氨解法,并主要对氨解法进行了研究,分别得出了最佳工艺条件,同时对两种方法进行了比较。  相似文献   

4.
Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains.  相似文献   

5.
比较了多株单、双倍体糖化酵母,选出糖化酶活性及发酵度较高的糖化酵母单倍体──Soc.diastaticus26067-44。同时发现糖化酵母单倍体菌株的酶活性高于二倍体菌株。含有POF1基因的糖化酵母(pof+表型)可脱羧肉桂酸形成苯乙烯,pof-菌株无此能力。通过气相色谱检测肉桂酸-酒花麦汁发酵液中的苯乙烯含量,可以鉴别出去除POFl基因的菌株。本文利用酵母菌的群体杂交法,通过S.diastaticus26067-44与酿酒酵母单倍体杂交,获得1株糖化酶活性及发酵度较高,并且去除了POF1基因的单倍体菌株H-3(2)-2(a,STA,pof-)·  相似文献   

6.
Conventional extraction protocols for yeast have been developed for relatively rapid‐growing low cell density cultures of laboratory strains and often do not have the integrity for frequent sampling of cultures. Therefore, these protocols are usually inefficient for cultures under slow growth conditions or of non‐laboratory strains. We have developed a combined mechanical and chemical disruption procedure using vigorous bead‐beating that can consistently disrupt yeast cells (> 95%), irrespective of cell cycle and metabolic state. Using this disruption technique coupled with quenching, we have developed DNA, RNA and protein extraction protocols that are optimized for a large number of samples from slow‐growing high‐density industrial yeast cultures. Additionally, sample volume, the use of expensive reagents/enzymes, handling times and incubations were minimized. We have tested the reproducibility of our methods using triplicate/time‐series extractions and compared these with commonly used protocols or commercially available kits. Moreover, we utilized a simple flow‐cytometric approach to estimate the mitochondrial DNA copy number. Based on the results, our methods have shown higher reproducibility, yield and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Intensification of the industrial brewing process, particularly the use of higher gravity worts, has been driven by increasing competition within the industry as well as the need to maximise the use of raw materials and minimise energy expenditure. These developments have, however, placed greater demands on brewing yeast strains, whose evolutionary history has not prepared them for the extreme conditions associated with higher gravity brewing. Various yeast nutrient supplements have been used or proposed to maintain yeast performance under stressful conditions. These have included specific metal ions, lipids and lipid components such as fatty acids and sterols and free amino nitrogen, usually supplied in the form of a complex yeast food. Correction of wort nutritional deficiencies may reduce stress sensitivity of yeast and improve fermentation performance. Potential negative consequences of altering wort composition must however be considered, as important beer quality attributes such as taste, stability and foam can be affected. Here, the various options for nutrient supplementation and their influence on yeast physiology and performance, as well as beer characteristics are considered.  相似文献   

8.
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.  相似文献   

9.
A reference library of ITS PCR/RFLP profiles was collated and augmented to evaluate its potential for routine identification of domestic brewing yeast and known ‘wild’ yeast contaminants associated with wort, beer and brewing processes. This library contains information on band sizes generated by restriction digestion of the ribosomal RNA‐encoding DNA (rDNA) internal transcribed spacer (ITS) region consisting of the 5.8 rRNA gene and two flanking regions (ITS1 and ITS2) with the endonucleases CfoI, HaeIII, HinfI and includes strains from 39 non‐Saccharomyces yeast species as well as for brewing and non‐brewing strains of Saccharomyces. The efficacy of the technique was assessed by isolation of 59 wild yeasts from industrial fermentation vessels and conditioning tanks and by matching their ITS amplicon sizes and RFLP profiles with those of the constructed library. Five separate, non‐introduced yeast taxa were putatively identified. These included Pichia species, which were associated with conditioning tanks and Saccharomyces species isolated from fermentation vessels. Strains of the lager yeast S. pastorianus could be reliably identified as belonging to either the Saaz or Frohberg hybrid group by restriction digestion of the ITS amplicon with the enzyme HaeIII. Frohberg group strains could be further sub‐grouped depending on restriction profiles generated with HinfI.  相似文献   

10.
A combination of biological and non‐biological factors has led to the interspecific hybrid yeast species Saccharomyces pastorianus becoming one of the world's most important industrial organisms. This yeast is used in the production of lager‐style beers, the fermentation of which requires very low temperatures compared to other industrial fermentation processes. This group of organisms has benefited from both the whole‐genome duplication in its ancestral lineage and the subsequent hybridization event between S. cerevisiae and S. eubayanus, resulting in strong fermentative ability. The hybrid has key traits, such as cold tolerance and good maltose‐ and maltotriose‐utilizing ability, inherited either from the parental species or originating from genetic interactions between the parent genomes. Instability in the nascent allopolyploid hybrid genome may have contributed to rapid evolution of the yeast to tolerate conditions prevalent in the brewing environment. The recent discovery of S. eubayanus has provided new insights into the evolutionary history of S. pastorianus and may offer new opportunities for generating novel industrially‐beneficial lager yeast strains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Conventional isolation and detection methods for small RNAs from yeast cells have been designed for a limited number of samples. In order to be able to conduct a genome‐wide assessment of how each gene product impacts upon small RNAs, we developed a rapid method for analysing small RNAs from Saccharomyces cerevisiae wild‐type (wt) and mutants cells in the deletion and temperature‐sensitive (ts) collections. Our method implements three optimized techniques: a procedure for growing small yeast cultures in 96‐deepwell plates, a fast procedure for small RNA isolation from the plates, and a sensitive non‐radioactive northern method for RNA detection. The RNA isolation procedure requires only 4 h for processing 96 samples, is highly reproducible and yields RNA of good quality and quantity. The non‐radioactive northern method employs digoxigenin (DIG)‐labelled DNA probes and chemiluminescence. It detects femtomole levels of small RNAs within 1 min exposure time. We minimized the processing time for large‐scale analysis and optimized the stripping and reprobing procedures for analyses of multiple RNAs from a single membrane. The method described is rapid, sensitive, safe and cost‐effective for genome‐wide screens of novel genes involved in the biogenesis, subcellular trafficking and stability of small RNAs. Moreover, it will be useful to educational laboratory class venues and to research institutions with limited access to radioisotopes or robots. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Yeast flocculation is the reversible aggregation of yeast cells promoted by the interaction between lectin‐like protein receptors with mannose side chains on adjacent cell walls. Flocculation is governed by several physiological factors, including the type of nutrient sugar available to yeast. We grew four industrial strains of Saccharomyces cerevisiae , representing applications in the brewing, winemaking and bioethanol sectors, to late stationary phase and quantified the cellular content of mannans, glucans and lectin‐like proteins on yeast cell surfaces. Results indicated that brewing and champagne strains showed moderate to high flocculation ability when grown with glucose, fructose, maltose or galactose, whereas winemaking and fuel alcohol strains only showed moderate flocculation when grown on maltose and galactose. All yeast strains studied were weakly flocculent when grown on mannose. With regard to lectin‐like receptors, their number played a more important role in governing yeast flocculation than the mannan and glucan contents in yeast cell walls. We conclude that all the industrial strains of S. cerevisiae belonged to New‐Flo type on the basis of their flocculation behaviour observed when cultured on different sugars. Quantification of yeast cell wall polysaccharides and receptor sites indicates that mannan and glucan levels remain almost constant, irrespective of the strain under investigation. The main difference in flocculation characteristics in industrial yeast strains appears to be due to variations in concentrations of lectin‐like cell surface receptors. Our findings may benefit brewers, winemakers and other yeast‐based technologies in design of media to prevent premature flocculation during fermentation. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

14.
Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains.  相似文献   

15.
Using an agarose gel screening procedure, 2 μm DNA plasmid was detected in all of 10 brewing strains of Saccharomyces yeast examined and in both of two non-brewing, dextrin-utilising strains. Plasmid DNA was identified in yeast grown with access to air in MYGP medium or in hopped wort, and in yeast harvested from 3-day wort fermentations. The yeast plasmid is a suitable self-cloning vector for the genetic manipulation of brewing yeasts by transformation.  相似文献   

16.
细菌总RNA提取方法的比较   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

17.
Delimination of brewing yeast strains using different molecular techniques   总被引:1,自引:0,他引:1  
In general, the genetic characteristics, the phenotype and the microbial purity of the production brewing yeast strains are among the most important factors in maintaining a consistently good quality of products. Analysis of restriction fragment length polymorphism (RFLP) patterns of 18S rRNA-coding DNA was investigated to group ale and lager strains. All production brewing yeast strains showed the same RFLP pattern as the type strain and synonym type strains of S. cerevisiae, and were quite different from the type and synonym type strains of S. pastorianus. Based on these data, all production brewing yeast strains investigated in this study appeared to belong to S. cerevisiae. Electrophoretic karyotyping and random amplified polymorphic DNA (RAPD) analysis appeared to be suitable methods for distinguishing not only the type and synonym type strain of S. cerevisiae and S. pastorianus, but also the ale and the lager strains.  相似文献   

18.
The diversity of yeasts isolated from brewing plants and its role on beer quality makes yeast distinction a major concern in industrial microbiological control. Several approaches have been tried to develop rapid and simple methods to perform such tasks. Among these, stands the utilization of long-chain fatty acid composition of total yeast biomass. In this paper results are reported showing the potential of this technique to characterize yeast flora isolated from industrial plants. Fatty acid profiles of brewing species are clearly differentiated from those of non-Saccharomyces strains using statistical data treatment by principal component analysis (PCA). Distinction between brewing and wild strains of Saccharomyces spp. was not apparent. In comparison, fatty acid profiling showed higher discriminating ability than growth on lysine medium for non-Saccharomyces strains. For distinction of S. cerevisiae var. diastaticus from other Saccharomyces strains, growth on starch medium showed to be necessary.  相似文献   

19.
The fermentation of maltotriose, the second most abundant fermentable sugar in wort, is often incomplete during high-gravity brewing. Poor maltotriose consumption is due to environmental stress conditions during high-gravity fermentation and especially to a low uptake of this sugar by some industrial strains. In this study we investigated whether the use of strains with an alpha-glucosidase attached to the outside of the cell might be a possible way to reduce residual maltotriose. To this end, the N-terminal leader sequence of Kre1 and the carboxy-terminal anchoring domain of either Cwp2 or Flo1 were used to target maltase encoded by MAL32 to the cell surface. We showed that Mal32 displayed on the cell surface of Saccharomyces cerevisiae laboratory strains was capable of hydrolysis of alpha-1,4-linkages, and that it increased the ability of a strain lacking a functional maltose permease to grow on maltotriose. Moreover, the enzyme was also expressed and found to be active in an industrial strain. These data show that expressing a suitable maltase on the cell surface might provide a means of modifying yeast for more complete maltotriose utilization in brewing and other fermentation applications.  相似文献   

20.
Modern lager brewing yeasts used in beer production are hybrid strains consisting of at least two different genomes. To obtain information on the identity of the parental strains that gave rise to industrial lager yeasts, we used two-dimensional (2-D) gel electrophoresis and analysed the proteomes of different Saccharomyces species isolated from breweries. We found that the proteome of lager brewing yeasts and of the type strains of S. carlsbergensis, S. monacensis and S. pastorianus can be interpreted as the superimposition of two elementary patterns. One originates from proteins encoded by a S. cerevisiae-like genome. The other corresponds to a divergent Saccharomyces species whose best representative is a particular S. pastorianus strain, NRRL Y-1551. A map of industrial lager brewing yeasts has been established, with the individual origin of proteins and with identification of protein spots by comparison to known S. cerevisiae proteins. This 2-D map can be accessed on the Lager Brewing Yeast Protein Map server through the World Wide Web. This study provides the first example of the use of proteome analysis for investigating taxonomic relationships between divergent yeast species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号