共查询到16条相似文献,搜索用时 62 毫秒
1.
上世纪末,为适应网络监控、入侵检测、情报分析、商业交易管理和分析等应用的要求,数据流技术应运而生。数据流独特的特点,对传统数据的处理方法带来了很大的挑战。介绍了数据流的有关概念及数据流挖掘的特点,讨论了数据流挖掘的研究现状。最后,举例说明了数据流挖掘的应用,并展望了数据流挖掘未来的研究方向。 相似文献
2.
数据流挖掘算法研究综述 总被引:15,自引:3,他引:15
流数据挖掘是数据挖掘的一个新的研究方向,已逐渐成为许多领域的有用工具。在介绍数据流的基本特点以及数据流挖掘的意义的基础上,对现有数据流挖掘算法的主要思想方法进行了总结,并指出了这些方法的局限性。最后对数据流挖掘的发展方向进行了展望。 相似文献
3.
4.
有关数据流挖掘技术的研究是当前国际数据库研究领域的一个热点,数据流的特点在于数据规模宏大,并快速、持续地到达,对应的挖掘算法只能在内存中单遍扫描样本子集就可以获取相应的知识结构,还需要在一定时间内对学习的结果进行更新以适应数据分布的变化.本文对现有数据流上的挖掘算法进行综述,最后给出了数据流挖掘今后的一些研究方向. 相似文献
5.
概念漂移数据流挖掘算法综述 总被引:1,自引:0,他引:1
数据流是一种新型的数据模型,具有动态、无限、高维、有序、高速和变化等特性。在真实的数据流环境中,一些数据分布是随着时间改变的,即具有概念漂移特征,称为可变数据流或概念漂移数据流。因此处理数据流模型的方法需要处理时空约束和自适应调整概念变化。对概念漂移问题和概念漂移数据流分类、聚类和模式挖掘等内容进行综述。首先介绍概念漂移的类型和常用概念改变检测方法。为了解决概念漂移问题,数据流挖掘中常使用滑动窗口模型对新近事务进行处理。数据流分类常用的模型包括单分类模型和集成分类模型,常用的方法包括决策树、分类关联规则等。数据流聚类方式通常包括基于k- means的和非基于k- means的。模式挖掘可以为分类、聚类和关联规则等提供有用信息。概念漂移数据流中的模式包括频繁模式、序列模式、episode、模式树、模式图和高效用模式等。最后详细介绍其中的频繁模式挖掘算法和高效用模式挖掘算法。 相似文献
6.
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。 相似文献
7.
数据流的无限性、高速性使得经典的频繁模式挖掘方法难以适用到数据流中。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁模式挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集,然后利用Count-Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过实验分析,FP-SegCount算法是有效的。 相似文献
8.
面向数据流的频繁项集挖掘研究 总被引:1,自引:0,他引:1
孟彩霞 《计算机工程与应用》2010,46(24):138-140
针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁项集挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集。然后,利用Count Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率。 相似文献
9.
数据流的无限性、连续性和速度快等特点;使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法;该算法的空间复杂性为O(1/ε);数据流每个数据项的最坏处理时间是O(1/ε);其最好处理时间是O(1);输出结果的频率值误差为∑_(i=2)^j(1-μi)×ki。 相似文献
10.
11.
高维数据挖掘算法的研究与进展 总被引:1,自引:1,他引:1
生物信息学和电子商务应用的迅速发展积累了大量高维数据,对高维数据的挖掘变得越来越重要,一般的数据挖掘方法在处理高维数据时会遇到维灾的问题,同时传统相似性度量在高维空间中也变得没有意义。文章从频繁项集挖掘、聚类、分类等三个方面对最新的高维数据挖掘算法的现状进行了综述,对这些算法如何解决高维数据挖掘存在的问题进行研究。 相似文献
12.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率. 相似文献
13.
提出了一种新的CMNL-SW(Closed map and num list-sliding window)挖掘算法。具体使用数据结构Closedmap存储挖掘到的闭合项集和Num list存储所有不同项的序号,通过对添加新事务和删除旧事务包含的项序号进行简单的并集和该事务与之相关已经挖掘到的闭合项集进行交集运算来更新当前滑动窗口,使之能够根据用户任意指定的支持度阈值在线输出数据流上闭合频繁项集信息。通过理论分析和对真实数据集Mushroom,Retail-chain和人工合成数据集T40I10D100K的挖掘结果表明,提出的算法在时空效率上明显优于同类经典算法Moment和CFI-Stream,并且随着数据流上处理事务数的递增和快速改变表现出良好的稳定性。 相似文献
14.
基于计数的数据流频繁项挖掘算法 总被引:1,自引:0,他引:1
挖掘数据流的频繁项已受到广泛关注,经典的频繁项挖掘算法尽管能够比较好地找到频繁项,但对频繁项频数的估计往往存在较大误差.SRoEC(segment rotative efficient count),SReEC(segment reserve efficient count)和RFreq(reserve frequent)算法针对该问题,继承基于计数的算法思想,将计数器进行划分并定义相应的操作,以期提高频数统计准确度并减小噪音影响.实验和数据分析表明,这些算法不仅能够保证频数超过阈值的数据项都能被找到,而且大大提高了频繁项频数统计的准确性.在同样空间代价下,算法无论在模拟数据集和真实数据集实验中,都表现出较高的频数准确率、较低的频数偏差率和较高的频数保有率,尤其是数据分布较平缓时,算法优势更加明显. 相似文献
15.
基于滑动窗口的支持泛在应用的流聚类挖掘算法 总被引:2,自引:0,他引:2
近年来,泛在数据流挖掘逐渐成为数据挖掘发展的新热点,它具有在有限的资源上去挖掘无限的数据流,并可随时随地返回挖掘结果的特点,对此,本文提出一种基于滑动窗口的流聚类算法;该方法将一个滑动窗口分成n个大小相等的窗口单元,基于窗口单元进行增量式的知识相关性的挖掘,提高了流挖掘的效率;当窗口滑动时,通过衰变函数衰减当前滑动窗口内的第一个窗口单元的挖掘结果,并在当前滑动窗口挖掘结果中将其剔除,实现下一滑动窗口的增量式挖掘. 相似文献