首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
高能球磨制备纳米晶Al-Cu合金   总被引:2,自引:0,他引:2  
利用高能球磨工艺制备了纳米晶Al-Cu合金。发现按Al_(50)Cu_(50)配比纯元素粉末高能球磨时,形成了纳米晶的Cu_9Al_4金属间化合物。初步探讨了高能球磨纳米晶金属间化合物的形成过程。  相似文献   

2.
高能球磨制备纳米晶Al—Cu合金   总被引:2,自引:0,他引:2  
利用高能球磨工艺制备了纳米晶Al-Cu合金,发现按Al50Cu50配比纯元素粉同能球地,形成了纳米晶的Cu9Al4金属间化合物,初步探讨了高能纳米晶金属间化合物的形成过程。  相似文献   

3.
采用高能球磨法制备了W-TiC纳米复合粉体,分别采用无水乙醇、四氯化碳和甲苯作为球磨液体介质,并改变液体介质比,研究其对复合粉体球磨过程的影响,并对球磨后粉体的晶粒尺寸、晶格畸变、颗粒形貌以及比表面积进行测定和分析讨论。结果表明,球磨过程中适量的液体介质可以有效地改善粉体团聚、结块以及黏壁现象,提高出粉率。粉体的比表面积随着液体介质比的增加先增大后减小,无水乙醇的液体介质比为2时,球磨后粉体的比表面最大(2.3m2/g),颗粒形状近似于球形,平均粒径100nm,每个颗粒为多晶结构;液体介质的种类对粉体比表面影响较小;添加液体介质对粉体的晶粒细化有利。  相似文献   

4.
高能球磨制备TiB2/TiC纳米复合粉体   总被引:8,自引:0,他引:8  
研究了通过高能球磨制备TiB2/TiC纳米复合粉体的反应过程和机理,对粉体的显微结构进行了表征。实验结果表明,采用金属Ti和B4C为原料,在球磨过程中,TiC先于TiB2形成。球磨5h后Ti与B4C反应生成TiB2和TiC,在随后的长时间高能球磨过程中TiB2和TiC两相保持稳定。球磨30h后,直径约8nm的TiC纳米粒子分布在100-200nm的TiB2粒子中,形成均匀分布的纳米TiB2/TiC复合粉体。  相似文献   

5.
用高能球磨制备氧化铁/聚氯乙烯纳米复合材料   总被引:7,自引:0,他引:7  
运用穆斯堡尔谱、TEM、XRD方法研究了Fe3O4/聚氯乙烯(PVC)粉末高能球磨产物,发现有超顺磁性α-Fe2O3生成,其形成原因可能是聚合物在空气中降解,生成含氧官能团与Fe3O4相互作用。  相似文献   

6.
高能球磨制备碳化钨过程中的结构转变   总被引:6,自引:0,他引:6  
高能球磨W粉和石墨粉的混合物,并对球磨产物进行退火处理。球磨4小时后在1173K退火,就得到WC和W2C;球磨28h后退火,得到了安全的h.c.p.WC。对球磨过程的分析发现W50C50混合粉末先形成固溶体,随后产生非晶化转变。在此实验条件下,球磨直接产物中没有检测到WC。另外,球磨时间和退火温度影响了相的组成与结构。  相似文献   

7.
吴怡芳  冯勇  胡锐  闫果  许红亮  卢亚峰 《材料导报》2005,19(Z1):299-301
对化学计量比的Mg/B原始粉体进行高能球磨,通过扫描电镜SEM和能谱分析EDX对球磨前后的粉末进行观察,对球磨过程中复合粉末的组织形貌和成分分布的变化进行了研究.结果表明:随着球磨时间的延长,Mg粉明显细化,B粉在Mg粉中的均匀弥散分布程度很好.  相似文献   

8.
胡保全  白培康  王延忠 《功能材料》2012,43(8):1031-1033
用机械合金化法制取Mo-8%Cu(质量分数)纳米复合粉末,采用液相烧结和致密化后处理工艺制备了Mo-8%Cu(质量分数)合金。通过扫描电镜对Mo-Cu液相烧结和变形加工后合金显微组织进行了分析,研究了各种工艺参数对Mo-Cu合金致密性、拉伸强度、延伸率和晶粒尺寸的影响。结果表明,高能球磨的Mo-8%Cu(质量分数)纳米复合粉末坯体,经液相烧结后,其烧结态为Mo、Cu复合网状组织,可获得相对密度高达98.6%的Mo-Cu合金,再经静液挤压变形加工处理后,可获得全致密的Mo-8%Cu(质量分数)合金,在室温静液挤压40%形变率的条件下,拉伸强度可达到576MPa,延伸率5.8%。  相似文献   

9.
采用机械合金化法制备出Mo-8wt%Cu超细复合粉末,并对由该复合粉末所制得的压坯进行了液相烧结,利用SEM、XRD等分析手段对复合粉末的特性和烧结体的组织进行了表征和观察,实验结果表明,该方法制备的Mo-8wt%Cu超细复合粉末颗粒细小,平均粒径在300nm左右,高能球磨后的复合粉末由Mo-Cu过饱和固溶体相和Cu相组成,而且两相的晶粒度达到纳米级,其中Mo-Cu过饱和固溶体相的晶粒约为106nm,复合粉末具有很高的烧结特性,经高温烧结后合金致密度达到98.5%以上,而且金相组织分布均匀。  相似文献   

10.
高能球磨制备非晶态合金研究的进展   总被引:7,自引:0,他引:7  
  相似文献   

11.
为获得高能球磨时间和退火温度对TiNi机械合金粉特性的影响机制,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、差示扫描量热法(DSC)等分析方法对TiNi合金粉进行了研究。结果表明,机械合金的相成分随着在氩气保护气氛中的球磨时间和退火温度的不同而发生变化。球磨22h的产物是非晶态TiNi合金、Ti的固溶体、Ni的固溶体,球磨27h的产物是非晶态TiNi合金粉和Ni固溶体相,球磨30h发生了明显的固相反应,生成了TiNi、Ni3Ti、Ti3Ni4等物相;在650℃/5h和1000℃/5h下的退火产物都是Ni3Ti、Ti2Ni、TiNi2、TiNi和TiC,但在上述2个退火温度下TiNi并不是主要物相,其中在650℃退火时TiNi的含量明显更低。  相似文献   

12.
对Mo-8wt%Cu复合粉末进行高能球磨,利用SEM、显微硬度仪对高能球磨后的层片状复合粉末进行了层片厚度和显微硬度的测定,并推导出层片厚度与球磨时间的理论模型,结果表明,随着球磨时间的延长,Mo-Cu复合粉末层片结构不断细化,片层厚度变小。硬度没有达到饱和值之前,粉末的硬度和球磨时间存在着线性关系,实测值小于计算值,而硬度值达到饱和值之后,实测值大于计算值。  相似文献   

13.
陈站  张晋敏  赵青壮  朱培强  郑旭  谢泉 《材料导报》2012,26(8):39-43,46
采用高能球磨法研究了原子配比Fe75Si25的混合粉末在不同的球磨条件下的机械合金化,用X射线衍射(XRD)仪、扫描电子显微镜(SEM)表征样品的物相、晶体结构、晶粒尺寸和点阵常数,分析了Fe75Si25粉末的机械合金化机理。研究表明,球磨时间、球料比和球磨机转速对机械合金化(MA)进程有重要影响。MA 55h后可达到完全合金化,Si溶入Fe中形成α-Fe(Si)饱和固溶体,晶粒尺寸减小至7~8nm。  相似文献   

14.
氧化铝高能球磨时机构力化学效应研究   总被引:8,自引:0,他引:8  
研究了氧化铝在高能球磨过程中机械力化学效应的变化,机械力化学效应因子随球磨时间的变化可分为三个阶段;第一阶段主要是晶粒尺寸减小和显微应变增加同时进行;第二阶段主要是有效温度系数的增加;第三阶段主要是点阵膨胀至饱和。用溶解法比较了球磨前后氧化铝的活性,发现经球磨后,氧化铝在盐酸中的溶解活化能由18kJ/mol降至4kJ/mol,表面活化层增厚。  相似文献   

15.
机械合金化制备PLZT(5/54/46)陶瓷   总被引:4,自引:0,他引:4  
研究了机械合金化制备PLZT陶瓷.实验结果表明,采用纳米TiO2原料,球磨5h就能得到PLZT粉体,而采用微米TiO2原料,球磨30h也只有少量的PLZT出现.可见纳米粉体在机械合金化制备PLZT粉体过程中起了重要的作用.机械合金化制备的PLZT粉体具有很好的烧结性能,在1000℃的烧结条件下可以得到致密度达97%的PLZT陶瓷,并且所得PLZT陶瓷的压电性能和铁电性能与其它文献报道的相当.这为实现铁电陶瓷与电极低温共烧打下了基础.  相似文献   

16.
用高能机械球磨法制备了金属铁、钨微粉,对振动磨的结构及破碎原理作了简要介绍,分析了铁、钨粉末产品的粒度分布特性、比表面积变化情况,讨论了原料性质、球磨时间、球磨强度、球料比等因素对高能球磨过程的影响。  相似文献   

17.
采用高能行星式球磨机制备了Cr掺杂Fe-Si混合粉,用X射线衍射(XRD)测试研究Cr掺杂Fe-Si合金的机械合金化过程,实验结果表明,随着球磨强度的增加,Fe、Cr、Si粉末通过原子扩散实现机械合金化,最佳的球磨工艺参数为:球磨时间35h、球磨机转速360r/min、球料比40:1。  相似文献   

18.
为制备Ti-Al金属间化合物复合涂层并研究其性能,以机械球磨的Ti-Al混合粉在Q235钢表面进行反应等离子喷涂实验,分别采用X射线衍射、扫描电子显微镜对涂层的成分、显微组织进行了分析,并测试了涂层的结合强度、显微硬度和耐腐蚀性能.结果表明:涂层由Al3Ti、TiN、Al2O3、少量TiAl与Ti3Al、以及残留的Al和Ti组成;球磨可促进喷涂时的反应,但喷涂时Al和Ti仍未完全反应,且在空气环境中喷涂容易氧化和氮化;涂层与基体之间是镶嵌式的机械结合,结合强度平均为30.24 MPa;涂层表面的显微硬度平均为206.1 HV,涂层的耐腐蚀性优于基体.总体上看,当球磨时间较长、电流较大、喷涂距离较大、气流量较小时,喷涂时的反应较充分,且涂层比较均匀、致密,其强度、硬度以及耐腐蚀性能较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号