首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
电力变压器绕组短路电动力计算   总被引:1,自引:0,他引:1  
针对短路时电力变压器绕组易发生形变,绝缘受损问题,通过三维磁场对其绕组电感矩阵进行计算以获取短路电流,之后采用绕组电路与变压器三维磁场进行耦合分析,运用分层切片剖分,计算出变压器绕组短路时轴向和辐向的电动力,校核了该电动力对绕组的破坏强度影响。并以一台180 000 kVA的三相五柱式电力变压器为例进行分析。结果表明,低压绕组在辐向受到较大向内的压缩力(辐向电动力),若该力超出临界值时将使绕组绝缘受到损坏,影响变压器使用寿命。同时绕组所受轴向电动力将引起绕组松动,严重时导致绕组坍塌,此电动力呈对称分布。该方法有助于更准确计算变压器绕组内部磁场分布及所受电动力影响,为研究类似问题提供了依据。  相似文献   

2.
电力变压器绕组电动力的分析计算   总被引:5,自引:0,他引:5  
利用有限元算法分析了三相电力变压器绕组各线匝在不同运行模式下电动力引起振动。在“磁—路”耦合模型中 ,电路参数的不同取值对应于变压器的不同运行模式———空载、常态和短路。分析结果表明 ,内绕组在径向受到压力 ,外绕组在径向受到张力 ,内、外绕组轴向电动力比径向力小很多 ,而相邻线饼或线匝间存在相互挤压力。尤其在短路条件下 ,巨大的电动力将使变压器线圈产生变形 ,其局部或整体受到破坏 ,最后导致变压器发生故障。  相似文献   

3.
基于有限元法电力变压器绕组的短路电动力分析   总被引:1,自引:0,他引:1       下载免费PDF全文
当电力变压器遭受短路故障时,短路瞬变电流导致绕组承受巨大的电动力,可能会造成绕组的变形,甚至使变压器发生绝缘和机械故障,因此计算短路电动力大小、探究其分布特点有助于预测短路后变压器绕组的变形情况,对变压器设计具有参考价值。文章通过有限元软件ANSYS Maxell建立三相变压器的二维和三维模型,并利用该模型分析三相短路后绕组轴向和辐向电动力。利用有限元法仿真得到的短路电流结果与公式计算的电流结果具有高度一致性,这充分说明有限元模型及其计算方法的可靠性。仿真结果表明,绕组两端受轴向力最大,辐向力最小;中部受辐向力最大,轴向力最小。  相似文献   

4.
李岩  刘爽  李文海  董振华 《变压器》2007,44(2):8-13
采用有限元方法计算了变压器短路情况下二维瞬态轴对称场,得出了线段电磁场和电磁力分布,给出了绕组短路强度计算方法,并对一台31 500kVA电力变压器绕组短路强度进行了计算.  相似文献   

5.
针对220 kV/180 MVA三绕组电力变压器出口短路时短路电流的计算问题,从磁势平衡原理出发,建立了在中压绕组短路工况下中压绕组短路力的计算模型,利用"场-路耦合"有限元方法计算了该模型的二维瞬态漏磁场,获得了中压绕组线饼的受力分布和瞬变曲线,并对受轴向短路电动力作用最大线饼的轴向稳定性进行了校核。计算结果表明,利用有限元软件ANSYS对三绕组变压器中压短路工况下中压绕组短路电动力的计算方法,省去了传统计算电动力复杂的计算过程及一些计算假设,提高了计算精度,变压器的中压绕组具有足够的轴向机械强度,对变压器设计和运行人员有一定的参考价值。  相似文献   

6.
李英  杨力军  辛朝辉 《变压器》2000,37(3):7-10,32
以具体计算实例分析了不同绕组结构对漏磁场及短路电动力的影响 ,提出了在大型变压器设计时改善漏磁场、提高机械强度的几点建议。  相似文献   

7.
本文中作者基于10kV配电变压器的具体结构参数,利用Comsol有限元仿真软件建立了三维模型,分别对圆形和椭圆形绕组进行了仿真分析。  相似文献   

8.
电力变压器短路时会产生巨大的短路电动力,当短路电动力过大时会导致变压器绕组变形.为研究三相三绕组变压器短路时的电动力分布和绕组变形情况,本文以一台50MV·A/110kV的三相三绕组变压器为例,计算变压器发生短路时的短路电流,将该短路电流作为激励,通过有限元软件计算绕组的短路电动力,采用磁-结构耦合的方式计算在最大短路电动力作用下的绕组变形和应力分布.结果表明,短路时低压绕组受到向内压缩的辐向电动力和向中间压缩的轴向电动力,绕组中间部分受到的短路电动力大于两端,导致绕组中部的变形程度大于两端.研究结果对研究变压器绕组变形具有一定实际意义.  相似文献   

9.
基于有限元法的变压器漏磁场及电动力分析   总被引:1,自引:0,他引:1  
基于有限元法系统地分析变压器在漏磁场中的短路受力情况。通过采用电磁场有限元法对变压器进行建模,分析变压器绕组的漏磁场分布情况及短路情况下线圈受到的电动力。研究结果表明,变压器在额定运行时的漏磁场分布特点为,绕组的轴向和径向上都有漏磁分量存在,但主要的是轴向漏磁通;在短路情况下,高-低压绕组受到不同方向的径向电动力,轴向和径向电动力在绕组上的分布有一定的规律性。采用有限元法计算的结果揭示了变压器绕组各部位的磁感应强度及电动力分布情况,分析结果为变压器抗短路能力校核提供了理论指导和依据。  相似文献   

10.
王晓刚 《电工技术》2003,(12):17-18
分析了变压器短路时绕组受力分布情况,并结合实例介绍绕组变形的常见形式及提高变压器抗短路能力的措施。  相似文献   

11.
大型变压器线圈短路电磁力的数值计算   总被引:5,自引:0,他引:5  
本文将有限元方法用于大型电力变压器突发短路时瞬态电磁场计算,推导了了轴对称非线性瞬态涡流场的有限元计算公式。针对一台24000KVA电力变压器线圈短路电磁力进行了计算分析,得出了电磁力的分布曲线和瞬变规律。  相似文献   

12.
张博  李岩  颜宁 《变压器》2015,(9):6-9
以一台DFP1-240MVA/500k V型电力变压器为例,采用电场、磁场和结构场强耦合的方式,进行了短路强度的计算,验证了方法的可靠性。引入国标对产品进行了校验,并比较了不同方案对抗短路机械强度的影响。  相似文献   

13.
计算了电力变压器绕组各线饼的辐向短路力。  相似文献   

14.
建立了绕组轴向振动模型,计算了绕组固有频率、线饼位移及线饼动态力,研究了线饼振动位移变化规律.通过将线饼动态力频谱与绕组固有频率的相互比较,验证了固有频率对线饼动态力的影响.  相似文献   

15.
推导出了变压器轴向短路力与绕组轴向高度微变后电抗变化量关系的计算公式,解决了长期以来无法对变压器短路计算结果进行测量比对的难题。  相似文献   

16.
本文通过对变压器线圈载流导体涡流损耗的解析解和数值解的对比,提出了一种既节省计算时间,又有良好精度的适合于变压器线圈涡流损耗计算的新的混合算法,并以360 000kVA和17 000kVA两台三相电力变压器为例进行了计算。  相似文献   

17.
变压器绕组中的短路电流峰值的确定   总被引:1,自引:2,他引:1  
王璋奇  施传立 《变压器》1998,35(5):25-27
阐述了变压器低压侧端口三相短路后,变压器绕组中短路电流的变化规律,论证了电源电压过零时短路,短路电流峰值有最大值的结论,并给出了一种确定短路电流最大值的数值计算方法。  相似文献   

18.
李中祥  付军  易梅生  李英  欧强 《变压器》2019,56(5):48-52
本文中作者阐述了变压器绕组极限倾斜力计算的影响因素,进行了四个绕组极限倾斜力的加压试验,并对计算结果与试验结果进行了对比分析。  相似文献   

19.
新型换流变压器绕组电磁力的分析计算   总被引:1,自引:0,他引:1  
许加柱  罗隆福  李勇  李季  刘福生 《高电压技术》2007,33(6):102-105,122
为充分了解新型换流变压器的内部漏磁场分布和各绕组受力情况,基于边单元法建立了新型换流变压器的三维有限元模型,采用非线性求解,精确分析了变压器在稳态和短路条件下的三维漏磁场分布,并获得各绕组两种工况下的轴向和径向漏磁感应强度的分布情况;采用电磁力计算方法分析计算了新型换流变压器在稳态和短路条件下的各绕组的电磁力。该方法可完全避开传统电磁力计算方法的局限性,适用于同心式、交错式和矩形等多种绕组结构,可为变压器的绕组及垫块设计和制造、绕组承受短路的稳态、动态特性分析和绕组故障分析提供科学数据,具有一定的理论和工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号