首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzymatic steps involved in the inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae have been investigated. Yeast, incubated with 2-deoxygalactose, accumulates up to 8 mM-2-deoxygalactose, 30 mM-2-deoxygalactose-1-phosphate and 0.25 mM-UDP-2-deoxygalactose and UDP-2-deoxyglucose. An inverse correlation between 2-deoxygalactose-1-phosphate content and rate of glycolysis has been observed. The intracellular concentration of glycolytic intermediates and related metabolites point to the hexokinase and phosphofructokinase steps as the targets for the inhibition of glycolysis by 2-deoxygalactose and rule out all other mechanisms that have been proposed to explain this inhibition.  相似文献   

2.
In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase‐related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2‐phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double‐null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase‐related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Previously, studies on glucose-induced microautophagy in the methylotrophic yeast Pichia pastoris provided evidence that the glucose-induced selective autophagy-1-protein is the alpha-subunit of 6-phosphofructokinase (Pfk), a key enzyme in the glycolytic pathway. In our work, we could clearly demonstrate that two types of subunits of Pfk exist in P. pastoris. Investigating the yeast cell-free extract by Western blot analysis, two distinct signals of Pfk were obtained. In addition, we isolated a DNA sequence containing the complete ORF of PpPFK2 encoding the beta-subunit of Pfk from P. pastoris with a deduced molecular mass of 103.7 kDa. On the basis of these results, a hetero-oligomeric structure of Pfk in P. pastoris became obvious. Because the molecular and kinetic properties of a homo-oligomeric yeast Pfk appear to be more similar to those of mammalian Pfk, as described in the literature, our results are of interest for the growing number of studies on P. pastoris as a heterologous production system. Furthermore, the 3'- and 5'-non-coding regions of PpPFK2 were isolated and several putative binding sites for regulatory factors could be identified in the promoter region.  相似文献   

4.
The Saccharomyces cerevisiae HUT1 gene (scHUT1) and the Schizosaccharomyces pombe hut1(+) gene (sphut1(+)) encode hydrophobic proteins with approximately 30% identity to a human UDP-galactose transporter-related gene (UGTrel1) product. These proteins show a significant similarity to the nucleotide sugar transporter and are conserved in many eukaryotic species, but their physiological functions are not known. Both scHUT1 and sphut1(+) genes are non-essential for cell growth under normal conditions, and their disruptants show no defects in the modification of O- and N-linked oligosaccharides, but are sensitive to a membrane-permeable reducing agent, dithiothreitol (DTT). Consistent with this phenotype, scHUT1 has genetic interaction with ERO1, which plays an essential role in the oxidation of secretory proteins at the endoplasmic reticulum (ER). Overexpression of the MPD1 or MPD2 genes, which were isolated as multicopy suppressors of protein disulphide isomerase (PDI) depletion, could not replace the essential function of PDI in Delta hut1 S. cerevisiae cells. Our results indicate that scHut1p and spHut1p are functional homologues, and their physiological function is to maintain the optimal environment for the folding of secretory pathway proteins in the ER.  相似文献   

5.
Fluorescent proteins are convenient tools for measuring protein expression levels in the budding yeast Saccharomyces cerevisiae. Co‐expression of proteins from distinct vectors has been seen by fluorescence microscopy; however, the expression of two fluorescent proteins on the same vector would allow for monitoring of linked events. We engineered constructs to allow dicistronic expression of red and green fluorescent proteins and found that expression levels of the proteins correlated with their order in the DNA sequence, with the protein encoded by the 5′‐gene more highly expressed. To increase expression levels of the second gene, we tested four regulatory elements inserted between the two genes: the IRES sequences for the YAP1 and p150 genes, and the promoters for the TEF1 gene from both S. cerevisiae and Ashbya gossypii. We generated constructs encoding the truncated ADH1 promoter driving expression of the red protein, yeast‐enhanced Cherry, followed by a regulatory element driving expression of the green protein, yeast‐enhanced GFP. Three of the four regulatory elements successfully enhanced expression of the second gene in our dicistronic construct. We have developed a method to express two genes simultaneously from one vector. Both genes are codon‐optimized to produce high protein levels in yeast, and the protein products can be visualized by microscopy or flow cytometry. With this method of regulation, the two genes can be driven in a dicistronic manner, with one protein marking cells harbouring the vector and the other protein free to mark any event of interest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Diploid cells with ability to mate, hereafter referred to as diploid mater cells, were obtained at significant frequencies by the heat treatment of haploid spores at the early germination stage in Saccharomyces cerevisiae heterothallic strain CG5M ( a /α diploid cells heterozygous for five auxotrophic markers). The highest frequency (ca. 11%) of diploidization was obtained from viable cells after heat treatment at 55°C for 10 min when spores were precultivated for 30 min in liquid medium to initiate the germination. The diploid mater cells obtained were homozygous for mating type and for the auxotrophic markers. The diploidization of a spore is thus concluded to be due to endomitotic events in germinating heat-treated spores.  相似文献   

8.
Yeast (Saccharomyces cerevisiae) cytosol was examined for the presence of calcium-dependent membrane- or lipid-binding proteins that might play fundamental roles in membrane-associated phenomena in stimulated cells. A complex group of proteins was isolated from late log phase cultures of yeast strain YP3 on the basis of calcium-dependent association with yeast secretory vesicles isolated from the temperature-sensitive sec6-4 secretory mutant. The masses of the major proteins in this group were 32, 35, 47, 51, 55, 60 and 120 kDa. A similar group of proteins was isolated by calcium-dependent association with bovine brain lipids enriched in the predominant acidic phospholipids of the yeast secretory vesicles. The 47 kDa protein was highly purified when commercial yeast cake was used as the source of yeast cytosol. The 32 kDa and 60 kDa proteins were demonstrated to reassociate with lipids at calcium concentrations of 100 microM or higher, while no association was promoted by 2 mM-magnesium. The 47 kDa protein could be removed from lipids by reducing the calcium concentration to between 1 and 32 microM. The sequences of peptides isolated from digests of several of these proteins indicate that they are novel proteins but are insufficient to judge the possible homology of these proteins with mammalian membrane-binding proteins. The sequence data may be adequate to permit isolation and modification of the corresponding genes in order to assess the possible function of this class of proteins in stimulated cells.  相似文献   

9.
All eight of the CCT1-CCT8 genes encoding the subunits of the Cct chaperonin complex in Saccharomyces cerevisiae have been identified, including three that were uncovered by the systematic sequencing of the yeast genome. Although most of the properties of the eukaryotic Cct chaperonin have been elucidated with mammalian systems in vitro, studies with S. cerevisiae conditional mutants revealed that Cct is required for assembly of microtubules and actin in vivo. Cct subunits from the other yeasts, Candida albicans and Schizosaccharomyces pombe, also have been identified from partial and complete DNA sequencing of genes. Cct8p from C. albicans, the only other completely sequenced Cct protein from a fungal species other than S. cerevisiae, is 72% and 61% similar to the S. cerevisiae and mouse Cct8 proteins, respectively. The C. albicans CCT8 sequence has been assigned the Accession Number U37371 in the GenBank/EMBL database.  相似文献   

10.
Functional prediction of open reading frames coded in the genome is one of the most important tasks in yeast genomics. Among a number of large-scale experiments for assigning certain functional classes to proteins, experiments determining protein-protein interaction are especially important because interacting proteins usually have the same function. Thus, it seems possible to predict the function of a protein when the function of its interacting partner is known. However, in vitro experiments often suffer from artifacts and a protein can often have multiple binding partners with different functions. We developed an objective prediction method that can systematically include the information of indirect interaction. Our method can predict the subcellular localization, the cellular role and the biochemical function of yeast proteins with accuracies of 72.7%, 63.6% and 52.7%, respectively. The prediction accuracy rises for proteins with more than three binding partners and thus we present the open prediction results for 16 such proteins.  相似文献   

11.
12.
The fermentation of lignocellulose hydrolysates by Saccharomyces cerevisiae for fuel ethanol production is inhibited by 5-hydroxymethyl furfural (HMF), a furan derivative which is formed during the hydrolysis of lignocellulosic materials. The inhibition can be avoided if the yeast strain used in the fermentation has the ability to reduce HMF to 5-hydroxymethylfurfuryl alcohol. To enable the identification of enzyme(s) responsible for HMF conversion in S. cerevisiae, microarray analyses of two strains with different abilities to convert HMF were performed. Based on the expression data, a subset of 15 reductase genes was chosen to be further examined using an overexpression strain collection. Three candidate genes were cloned from two different strains, TMB3000 and the laboratory strain CEN.PK 113-5D, and overexpressed using a strong promoter in the strain CEN.PK 113-5D. Strains overexpressing ADH6 had increased HMF conversion activity in cell-free crude extracts with both NADPH and NADH as co-factors. In vitro activities were recorded of 8 mU/mg with NADH as co-factor and as high as 1200 mU/mg for the NADPH-coupled reduction. Yeast strains overexpressing ADH6 also had a substantially higher in vivo conversion rate of HMF in both aerobic and anaerobic cultures, showing that the overexpression indeed conveyed the desired increased reduction capacity.  相似文献   

13.
WL培养基在酿酒酵母筛选中的应用   总被引:2,自引:1,他引:2  
从葡萄果皮自然发酵液中分离酵母菌株。利用WL琼脂培养基及赖氨酸培养基筛选酿酒酵母,结果显示,在葡萄果皮自然发酵的早期不存在酿酒酵母,酿酒酵母最初出现在发酵中期即发酵后第4d。经过生理生化和分子鉴定结果表明,WL培养基对酿酒酵母的筛选可信度达到100%。  相似文献   

14.
Screening of the homozygous diploid yeast deletion pool of 4741 non-essential genes identified two null mutants (Deltaura7 and Deltagal6) that grew faster than the wild-type strain in medium containing 8% v/v ethanol. The survival rate of the gal6 disruptant in 10% ethanol was higher than that of the wild-type strain. On the other hand, the glucose consumption rate of the ura7 disruptant was better than that of the wild-type strain in buffer containing ethanol. Both disruptants were more resistant to zymolyase, a yeast lytic enzyme containing mainly beta-1,3-glucanase, indicating that the integrity of the cell wall became more resistance to ethanol stress. The gal6 disruptant was also more resistant to Calcofluor white, but the ura7 disruptant was more sensitive to Calcofluor white than the wild-type strain. Furthermore, the mutant strains had a higher content of oleic acid (C18 : 1) in the presence of ethanol compared to the wild-type strain, suggesting that the disruptants cope with ethanol stress not only by modifying the cell wall integrity but also the membrane fluidity. When the cells were grown in medium containing 5% ethanol at 15 degrees C, the gal6 and ura7 disruptants showed 40% and 14% increases in the glucose consumption rate, respectively.  相似文献   

15.
白酒酿造中酿酒酵母与巴氏醋杆菌相互作用的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
酿酒酵母(Saccharomyces cerevisiae)和巴氏醋杆菌(Acetobacter pasteurianus)是白酒酿造过程中重要的发酵微生物,其对乙酸乙酯的生成有很大影响。本文采用酵母和醋酸菌同步接种和顺序接种方式,以酵母单独接种发酵作对照,研究了酿酒酵母与巴氏醋杆菌的相互作用及其对乙酸乙酯生成的影响。结果表明,采用同步接种方式,在发酵前期,醋酸菌对酵母的生长和代谢影响较小,酵母酒精发酵对醋酸菌的生长有抑制作用,混菌发酵乙酸乙酯的合成也受到一定抑制;在发酵后期,醋酸菌的生长和产酸将加快酵母衰亡,但有利于乙酸乙酯的合成,其最高达(595.72±5.01)mg/L,是酵母单菌发酵的10.1倍。采用顺序接种方式,在酵母发酵24 h后接种醋酸菌对酵母酒精发酵影响最大,其酒精度比对照低22.98±1.77%,乙酸乙酯含量都低于同步接种方式。此外,酵母代谢产生的某些物质会抑制醋酸菌合成乙酸乙酯,而当发酵体系中存在活酵母时,该抑制将解除。  相似文献   

16.
Hsp70 proteins have been highly conserved throughout evolution. As a first step in a structure-function analysis of hsp70, we constructed and analysed the consequences of mutations in a portion of the SSA1 gene, a member of the Saccharomyces cerevisiae HSP70 multigene family, that encodes a nearly invariant region near the amino terminus. Analysis of strains expressing SSA1 proteins with alterations at positions 8, 11 and 15 showed that these conserved residues within this region are critical for normal functioning of the protein. SSA1 protein containing either of two changes at position 15 was able to slightly complement the inviability of an ssa1ssa2ssa4 strain, but was inactive in other complementation assays. The other mutant proteins tested were unable to complement any tested phenotype. Effective interallelic complementation of several phenotypes was observed when a mutant protein substituted at position 8 was expressed in the same cell with either of two proteins carrying substitutions at position 15, suggesting that hsp70 acts as a multimer. Evidence from previous studies suggests that hsp70 proteins engage in ATP-driven cycles of binding and release from peptides. The ability of the mutant proteins to bind ATP and a peptide was tested. The Ssa1p carrying a substitution at position 8, which inhibits growth of cells carrying wild-type SSA proteins, showed a defect in release from a peptide relative to wild type. Two mutations, one each at position 8 and 15, resulted in accumulation of phosphorylated isoforms which may be a normal, transient hsp70 intermediate.  相似文献   

17.
The bimolecular fluorescence complementation (BiFC) assay has been widely accepted for studying in vivo detection of protein-protein interactions in several organisms. To facilitate the application of the BiFC assay to yeast research, we have created a series of plasmids that allow single-step, PCR-based C- or N-terminal tagging of yeast proteins with yellow fluorescent protein fragments for BiFC assay. By examination of several interacting proteins (Sis1-Sis1, Net1-Sir2, Cet1-Cet1 and Pho2-Pho4), we demonstrate that the BiFC assay can be used to reliably analyse the occurrence and subcellular localization of protein-protein interactions in living yeast cells. The sequences for the described plasmids were submitted to the GenBank under Accession Nos: EF210802, pFA6a-VN-His3MX6; EF210803, pFA6a-VC-His3MX6; EF210804, pFA6a-VN-TRP1; EF210807, pFA6a-VC-TRP1; EF210808, pFA6a-VN-kanMX6; EF210809, pFA6a-VC-kanMX6; EF210810, pFA6a-His3MX6-P(GAL1)-VN; EF210805, pFA6a-His3MX6-P(GAL1)-VC; EF210806, pFA6a-TRP1-P(GAL1)-VN; EF210811, pFA6a-TRP1-P(GAL1)-VC; EF210812, pFA6a-kanMX6-P(GAL1)-VN; EF210813, pFA6a-kanMX6-P(GAL1)-VC; EF521883, pFA6a-His3MX6-P(CET1)-VN; EF521884, pFA6a-His3MX6-P(CET1)-VC; EF521885, pFA6a-TRP1-P(CET1)-VN; EF521886, pFA6a-TRP1-P(CET1)-VC; EF521887, pFA6a-kanMX6-P(CET1)-VN; EF521888, pFA6a-kanMX6-P(CET1)-VC. Copyright (c) 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We have used four glycoproteins as markers to study how disulfide bond formation and protein folding effect the intracellular transport of proteins in yeast. Under normal conditions, the vacuolar enzyme carboxypeptidase Y (CPY) and the secretory stress-protein hsp150 acquired disulfide bonds in the endoplasmic reticulum (ER). Treatment of living cells with the reducing agent dithiothreitol (DTT) prevented disulfide formation of newly synthesized CPY and hsp150, resulting in retention of the proteins in the ER. When DTT was removed, the sulfhydryls were reoxidized, and the transport of the proteins to their correct destinations was resumed. Even mature CPY, located in the vacuole, could be reduced with DTT, and reoxidized after removal of the drug. DTT treatment blocked intracellular transport of hsp150 only when present during the synthesis and translocation of the protein. Reduction of folded hsp150, accumulated in the ER due to a sec block prior to DTT treatment, did not inhibit its secretion. The Kar2p/BiP protein, a component of the ER lumen, was found to be associated with fully translocated reduced hsp150, but not with native hsp150, suggesting that Kar2p/BiP may be involved in the putative retention mechanism. The cysteine-free pro-α-factor, and invertase which was shown to have free sulfhydryls, were secreted and modified similarly in the presence and absence of DTT, showing that the secretory pathway of yeast functioned under reducing conditions.  相似文献   

19.
Although fragmentation of DNA has been observed in cells undergoing freezing procedures, a mutagenic effect of sub‐zero temperature treatment has not been proved by induction and isolation of mutants in nuclear DNA (nDNA). In this communication we supply evidence for mutagenicity of freezing on nDNA of Saccharomyces cerevisiae cells. In the absence of cryoprotectors, cooling for 2 h at +4°C and freezing for 1 h at ?10°C and 16 h at ?20°C, with a cooling rate of 3°C/min, resulted in induction of frame‐shift and reverse mutations in microsatellite and coding regions of nDNA. The sub‐zero temperature exposure also has a strong recombinogenic effect, evidenced by induction of gene‐conversion and crossing‐over events. Freezing induces mutations and enhances recombination with a frequency equal to or higher than that of methylmethanesulphonate at comparable survival rates. The signals for the appearance of nDNA lesions induced by freezing are detected and transduced by the DNA damage pathway. Extracellular cryoprotectors did not prevent the mutagenic effect of freezing, while accumulation of trehalose inside cells reduced nDNA cryodamage. Freezing of cells is accompanied by generation of high ROS levels, and the oxidative stress raised during the freeze–thaw process is the most likely reason for the DNA damaging effect. Experiments with mitochondrial rho mutants or scavengers of ROS indicated that mutagenic and recombinogenic effects of sub‐zero temperatures can be decreased but not eliminated by reduction of ROS level. The complete protection against cryodamage in nDNA required simultaneous usage of intracellular cryoprotector and ROS scavenger during the freeze–thaw process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号