首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical refining of rice bran oil in relation to degumming and dewaxing   总被引:15,自引:7,他引:8  
Physical refining of rice bran oil (RBO) with acidity between 4.0 and 12.4% has been investigated in relation to degumming and dewaxing pretretments. It appears that physical refining after combined low-temperature (10°C) degumming-dewaxing produces good-quality RBO with respect to color, free fatty acid, oryzanol, and tocopherol content.  相似文献   

2.
The effects of the chemical refining process on the minor compounds of rice bran oil and its heat stability were investigated. After 8 h of heating, about 50% and 30% of total tocopherols remained in crude and refined rice bran oil, respectively. The individual tocopherols were differently affected by the refining process. The order of heat stability of tocopherols and tocotrienols in crude oil was found to be different from that in fully refined oil. A similar tendency was observed for sterols. After 8 h of heating, 65% and 72% of total sterols, and 14% and 46% of sterol esters, of crude or fully refined rice bran oil, respectively, disappeared. The heating process led to a 4% and 10.3% increase in polymer contents in crude and refined rice bran oil, respectively. Although refined rice bran oil showed good heat stability, when compared to crude oil its heat stability was decreased to some extent.  相似文献   

3.
A new process for the physical refining of rice bran oil through combined degumming and dewaxing was developed on a laboratory scale and then demonstrated on a commercial scale. The simultaneous degumming and dewaxing of the crude oil with a solution of water and CaCl2, followed by crystallization at a low temperature (20°C), facilitated precipitation of the hydratable and nonhydratable phosphatides along with the wax, which enabled its separation and reduction to a greater extent. Bleaching and subsequent winterization (20°C) of this oil further reduced the phosphorus content to less than 5 ppm. Thus, these pretreatment steps enabled the physically refined rice bran oil to meet commercially acceptable levels for color, FFA content, and cloud point values (10–12 Lovibond units in a 1-in, cell, <0.25%, and 4–5°C, respectively) with very low neutral oil loss; this has not been observed hitherto. Rice bran oil is known for its high levels of bioactive phytochemicals, such as oryzanol, tocols, and sterols. The process reported here could retain more than 80% of these micronutrients in the end product. This paper was previously presented at the 95th AOCS Annual Meeting and Expo, Cincinnati, Ohio, May 9–12, 2004  相似文献   

4.
The effect of the full refining process on the stability of rice bran oil during storage at room temperature was studied. Crude and refined rice bran oil were kept in the dark and were exposed to light for 240 days, and every 10 days samples were drawn and analysed. The storage stability of crude and fully refined rice bran oil was determined and compared with respect to fatty acid composition, tocopherols, tocotrienols, sterols and γ‐oryzanol content. In addition, the oxidative status was evaluated by determining the concentration of polar compounds and the oil stability index (OSI). A good correlation between the decrease of total tocopherols and the OSI was found. α‐Tocopherol had the highest correlation coefficient (r2 = 0.9653) in crude rice bran oil kept in the dark, and γ‐tocopherol showed the lowest in the refined sample (r2 = 0.4722). The order of stability of tocopherols and tocotrienols in crude oil was completely different from that in refined oil. In comparison to tocopherols, sterols showed a better stability during the entire storage period. The exposure to daylight heavily affected the composition and the stability of both crude and refined rice bran oil.  相似文献   

5.
Rice bran oil, not being a seed‐derived oil, has a composition qualitatively different from common vegetable oils and the conventional vegetable oil processing technologies are not adaptable without incurring huge losses. The oil's unusual high content of waxes, free fatty acids, unsaponifiable constituents, phospholipids, glycolipids and its dark color, all cause difficulties in the refining process. An attempt was made in this investigation to look into factors that are responsible for such difficulties and to develop suitable methodologies for physical refining of rice bran oil. Special attention was given to dewaxing, degumming and deacidification steps. The high content of glycolipids (∼6%) present in the oil was found to be a central problem and their removal appeared crucial for successful processing of the oil. We have also isolated and identified, for the first time, phosphorus‐containing glycolipids that are unique to this oil. These compounds prevent a successful degumming of the oil and their high surface activity leads to unusually high refining losses during alkali refining. A number of simple processes has been evolved, including 1) a simultaneous dewaxing and degumming process, 2) an unusual enzymatic process to degum the oil, 3) processes for the removal of the glycolipids including the phosphoglycolipids and 4) a process for the isolation of the glycolipids which may have potential applications in the food, cosmetic and pharmaceutical industries. The processing protocol suggested here becomes the first and only one to produce an oil with less than 5 ppm of phosphorus from crude rice bran oil, rendering it thus suitable for physical refining. We believe that the present results are very significant and should contribute to a better utilization of this valuable oil.  相似文献   

6.
The role of viscosity on was settling and refining loss in rice bran oil (RBO) has been studied with model systems of refined peanut oil and RBO of different free fatty acids contents. Wax was the only constituent of RBO that significantly increased the viscosity (81.5%) of oil. Monoglycerides synergistically raised the viscosity of the oil (by 114.2%) and lowered the rate of wax settling. Although a reduction in the viscosity of the oil significantly decreased the refining loss, the minimum loss attained was still 20% more than the theoretically predicted value. This led us to conclude that some chemical constituents, such as monoglycerides, must be removed before dewaxing; thereafter, oryzanol and phospholipids have to be removed. One can get an oil free of wax, recover other by-products and reduce processing losses.  相似文献   

7.
Oxidative stabilities of soybean oil samples at 7 different stages of commercial refinement were measured by weight increases. Also, a method was developed for isolating essentially pure soybean triglyceride, and its oxidative stability was measured. Crude oil was most stable and the highly purified soybean triglyceride was least stable, with other samples being intermediate in stability. Adding phospholipids and tocopherols to the highly purified soybean triglyceride gave its oxidative stability, and in combination they were synergistic in delaying oxidation. The weight increase method demonstrated that surface exposure is an important variable in rates of autoxidation. Published with the approval of the Director of the Arkansas Agricultural Experiment Station.  相似文献   

8.
The oxidative stability of partially hydrogenated menhaden fish oil (PHMO) shortening/canola oil blends with added antioxidant tertiary butylhydroquinone (TBHQ) and various blended partially hydrogenated vegetable oil (PHVO) shortenings without antioxidant in aged cookies and crackers was analyzed by anisidine value (AV), peroxide value (PV), and Totox value. The results showed no significant differences (P<0.05) for PV, AV, or Totox value between the PHMO shortening containing TBHQ and the PHVO shortening in cookies, crackers, and deep-fried extruded snacks, except for the AV and Totox value of crackers.  相似文献   

9.
Oryzanol is an important value-added co-product of the rice and rice bran-refining processes. The beneficial effects of oryzanol on human health have generated global interest in developing facile methods for its separation from rice bran oil soapstock, a by-product of the chemical refining of rice bran oil. In this article we discuss the isolation of oryzanol and the effect that impurities have on its extraction and purification. Presented are the principles behind the extraction (solid-liquid or liquid-liquid extraction, and other methods) of these unit operations covered in selected patents. Methods other than extraction such as crystallization or precipitation-based or a combination of these unit operations also are reviewed. The problems encountered and the ways to solve them during oryzanol extraction, such as prior processing and compositional variation in soapstock, resistance to mass transfer, moisture content and the presence of surface active components, which cause emulsion formation, are examined. Engineering inputs required for solving problems such as saponification, increasing mass transfer area, and drying methods are emphasized. Based on an analysis of existing processes, those having potential to work in large-scale extraction processes are presented.  相似文献   

10.
The aim of this study was to find out how the refining process affects the susceptibility of rice bran oil to oxygen of air at high temperature. Samples of crude and refined rice bran oil were heated at 180 °C for 8 h with and without stirring in laboratory‐scale experiments. After every 30 min, samples were taken for analysis. The influence of stirring on rice bran oil heat stability was related to the loss of tocopherols and sterols, and to the thermooxidative state of the samples, which was evaluated according to polymer formation and changes occurring in fatty acid composition and triacylglycerol (TAG) structure. The results demonstrated a significant loss of natural antioxidants during the heating process with stirring, accompanied by a decrease in the levels of linoleic acid (18:2) and TAG (LLO, LLP and OLO) which resulted in a substantial increase of polymer TAG. The unsaturated fatty acids in the sn‐2 and sn‐1,3 positions were differently affected during the heating process.  相似文献   

11.
Aqueous extraction of oil from rice bran was studied on a laboratory scale and the resulting product was examined. The following process parameters influencing oil extraction were individually investigated: pH of aqueous media, extraction temperature, extraction time, agitation speed and rice bran‐to‐water ratio. Extraction temperature and pH were found to be the main factors influencing oil extraction. The highest oil yield was obtained at pH 12.0, extraction temperature 50 °C, extraction time 30 min, agitation speed 1000 rpm, and rice bran‐to‐water ratio 1.5‐to‐10. The quality of aqueous‐extracted oil in terms of free fatty acid, iodine value and saponification value was similar to a commercial sample of rice bran oil and hexane‐extracted oil, but the peroxide value was higher. Furthermore, the colour of aqueous‐extracted oil was paler than solvent‐extracted oil. © 2000 Society of Chemical Industry  相似文献   

12.
对米糠综合利用的途径进行了详细论述;并总结厂各种米糠精制产品在日用化工、医药工业、食品工业、精细化工领域的具体用途,包括米糠油的浸提技术,米糠油作为营养保健食品的开发利用,米糠油作为油脂化工原材料的深加工;米糠油精炼皂脚中提取游离脂肪酸及脂肪酸衍生物的制备;米糠脱水、脱臭、脱色的小皂化物提取谷甾醇、生育酚、谷维素的方法;米糠脱蜡副产物制备糠蜡和二十烷醇的利用及米糠饼(粕)提取植酸钙、植酸和肌醇的利用途径,最后提出了大力发展我国米糠产业的市场前景。  相似文献   

13.
14.
Rice bran oil containing 30–50% free fatty acid was continually converted to an oil containing more than 75% of triacylglycerol (TG) by means of immobilized lipase. The reaction was carried out at 60°C for 24 h with dehydration and reactant mixing by dry nitrogen flow under a positive nitrogen atmosphere. Enzymatic TG synthesis with evaporation by heating was not suitable because of the increasing peroxide value of the oil. Part of this article was presented at the annual meeting of the Japan Oil Chemists' Society at Sendai, Japan, October, 16, 1990.  相似文献   

15.
The effect of different processing steps of refining on retention or the availability of oryzanol in refined oil and the oryzanol composition of Indian paddy cultivars and commercial products of the rice bran oil (RBO) industry were investigated. Degumming and dewaxing of crude RBO removed only 1.1 and 5.9% of oryzanol while the alkali treatment removed 93.0 to 94.6% of oryzanol from the original crude oil. Irrespective of the strength of alkali (12 to 20° Be studied), retention of oryzanol in the refined RBO was only 5.4–17.2% for crude oil, 5.9–15.0% for degummed oil, and 7.0 to 9.7% for degummed and dewaxed oil. The oryzanol content of oil extracted from the bran of 18 Indian paddy cultivars ranged from 1.63 to 2.72%, which is the first report of its kind in the literature on oryzanol content. The oryzanol content ranged from 1.1 to 1.74% for physically refined RBO while for alkali-refined oil it was 0.19–0.20%. The oil subjected to physical refining (commercial sample) retained the original amount of oryzanol after refining (1.60 and 1.74%), whereas the chemically refined oil showed a considerably lower amount (0.19%). Thus, the oryzanol, which is lost during the chemical refining process, has been carried into the soapstock. The content of oryzanol of the commercial RBO, soapstock, acid oil, and deodorizer distillate were in the range: 1.7–2.1, 6.3–6.9, 3.3–7.4, and 0.79%, respectively. These results showed that the processing steps—viz., degumming (1.1%), dewaxing (5.9%), physical refining (0%), bleaching and deodorization of the oil—did not affect the content of oryzanol appreciably, while 83–95% of it was lost during alkali refining. The oryzanol composition of crude oil and soapstock as determined by high-performance liquid chromatography indicated 24-methylene cycloartanyl ferulate (30–38%) and campesteryl ferulate (24.4–26.9%) as the major ferulates. The results presented here are probably the first systematic report on oryzanol availability in differently processed RBO, soapstocks, acid oils, and for oils of Indian paddy cultivars.  相似文献   

16.
In the present study we report the results obtained on the use of rice bran oil (RBO), a naturally occurring nontoxic oil, and its epoxidized variety (epoxidized RBO, or ERBO) in the compounding and vulcanization of different natural rubber–chloroprene rubber (NR–CR) blends. The processability, cure characteristics, and physical properties of the blends prepared with these oils were compared with those of control mixes prepared with aromatic oil. The optimum cure time and scorch time values of the different blends prepared with these oils were found to be lower than those of the respective control blends prepared with aromatic oil. Evaluation of physical properties of the different experimental blends showed that replacement of aromatic oil with these oils did not adversely affect their physical properties. Because RBO contains a good amount of free fatty acids it was tried as a coactivator in addition to its role as a processing aid. The level of these oils required for the blend preparation was optimized in a Brabender plasticorder. Physical properties such as tensile strength, elongation at break, tear strength, swelling index, and abrasion loss, for example, were evaluated for both experimental and control mixes. Comparison of cure characteristics and physical properties of the blends prepared with aromatic oil and with these oils showed that these oils could be used in place of aromatic oil in the above blends. It is also to be noted that aromatic oil is of petroleum origin and is reported to be carcinogenic. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4084–4092, 2003  相似文献   

17.
The effects of each individual step of the chemical refining process on major and minor components of rice bran oil were examined. In comparison with common vegetable oils, rice brain oil contains a significantly higher level of several bioactive minor components such as γ-oryzanol, tocotrienols, and phytosterols. Alkali treatment or neutralization results in a significant loss of oryzanol. In addition, it gives rise to a change in the individual phytosterol composition. After bleaching, some isomers of 24-methylenecycloartanol were detected. Because of their relatively high volatility, phytosterols and tocotrienols are stripped from the rice brain oil during deodorization and concentrated in the deodorizer distillate. At the same time, oryzanol is not volatile enough to be stripped during deodorization; hence, the oryzanol concentration does not change after deodorization. Complete refining removed 99.5% of the FFA content. Depending on the applied deodorization conditions, trans FA can be formed, but the total trans content generally remains below 1%.  相似文献   

18.
Blends of sunflower oil (SFO) and rice bran oil (RBO) were evaluated for their stability. Additionally, known amounts of natural antioxidants extracted from RBO were added to SFO, and their protective effect was compared to that of the blends. The results found indicate that by raising the amount of RBO, from 10 to 50%, an increase of OLO, OLP, PPL, OOO, PPO, OPO, 18:1 and 16:0 occurred, followed by a decrease of LLL, LLO, and 18:2. These changes in fatty acid and triacylglycerol (TAG) composition led to an increase of the oil stability index at 120 °C and a reduction of polymer TAG formation in the heated blends at 180 °C during 8 h. A comparable protective effect of natural antioxidants to that of blending was observed in a 50 : 50 blend, by remarkably increasing the induction period.  相似文献   

19.
Deacidifying rice bran oil by solvent extraction and membrane technology   总被引:8,自引:7,他引:8  
Crude rice bran oil containing 16.5% free fatty acids (FFA) was deacidified by extracting with methanol. At the optimal ratio of 1.8:1 methanol/oil by weight, the concentration of FFA in the crude rice bran oil was reduced to 3.7%. A second extraction at 1:1 ratio reduced FFA in the oil to 0.33%. The FFA in the methanol extract was recovered by nanofiltration using commercial membranes. The DS-5 membrane from Osmonics/Desal and the BW-30 membrane from Dow/Film Tec gave average FFA rejection of 93–96% and an average flux of 41 L/m2·h (LMH) to concentrate the FFA from 4.69% to 20%. The permeate, containing 0.4–0.7% FFA, can be nanofiltered again to recover more FFA with flux of 67–75 LMH. Design estimates indicate a two-stage membrane system can recover 97.8% of the FFA and can result in a final retentate stream with 20% FFA or more and a permeate stream with negligible FFA (0.13%) that can be recycled for FFA extraction. The capital cost of the membrane plant would be about $48/kg oil processed/h and annual operating cost would be about $15/ton FFA recovered. The process has several advantages in that it does not require alkali for neutralization, no soapstock nor wastewater is produced, and effluent discharges are minimized.  相似文献   

20.
Among the most important metabolic compounds there are some which are not synthesized by human and animal organisms and have to be supplied in appropriate quantities in due time. Vitamin E and the essential unsaturated fatty acids have crucial physiological significance, and their greatest quantities occur in plant oils. During refining, apart from unnecessary substances, nutritionally advantageous compounds are also being eliminated. In the present paper changes of tocochromanols taking place during refining of rapeseed oil obtained from seeds of two subsequent crops were investigated. It was observed that losses of tocopherols exceeded 30%, two thirds of which resulted from distilling off during deodorization. The ratio of vitamin E to essential unsaturated fatty acids expressed as the Harris coefficient decreased in the refined oil obtained from seeds of two subsequent crops by about 28%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号